Timing of umbilical cord clamping for neonatal and maternal outcomes

Wennerholm UB, Daxberg EL, Fasth A, Holmberg Y, Jangsten E, Stigson L, Strandell A, Jivegård L
Timing of umbilical cord clamping for neonatal and maternal outcomes
[Tidig och sen avnavling- effekter på mor och barn]

Wennerholm UB¹*, Daxberg EL², Fasth A³, Holmberg Y², Jangsten E⁴, Stigson L⁵, Strandell A⁶, Jivegård L⁶

¹Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
²Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
³Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
⁴School of Health Sciences, University of Borås, Sweden
⁵Department of Pediatrics, the Queen Silvia Children’s Hospital, Gothenburg, Sweden
⁶HTA-centrum of Region Västra Götaland, Sweden

*Corresponding author

Published juni 2012
2012:48
Table of content

Summary of the Health Technology Assessment .. 4
Which health technology or method will be assessed? .. 5
Disease/disorder of Interest and Present Treatment.. 6
Present Health Technology .. 8
Review of the Quality of Evidence .. 11
Ethical aspects .. 16
Organisation .. 16
Economy ... 17
Unanswered Questions .. 18

Statement from HTA-centrum 2012-04-25
Utlåtande från HTA-centrum 2012-04-25

Appendix 1 Outcome tables
Appendix 2 Excluded articles
Appendix 3 Search strategy, study selection and references
Appendix 4 Summary of Findings (SoF) table
Summary of the Health Technology Assessment

Method and patient group
Late versus early clamping of the umbilical cord- maternal and infant effects

Question at issue
Is early umbilical cord clamping not different from or better than late umbilical cord clamping regarding postpartum infant iron deficiency and iron deficiency anaemia variables, long-term cognitive function, loss of stem cells, maternal postpartum haemorrhage, manual removal of retained placenta and correct sampling for blood gas analysis?

Studied risks and benefits for patients of the new health technology
Level of evidence: The literature search identified four studies that fulfilled the selection criteria; a systematic review (SR) and three subsequently published randomised controlled trials (RCTs). The definition of early cord clamping varied from within 10 to < 60 sec between studies. The SR was methodologically of high quality but included mainly studies with high risk of bias. One of the RCTs was of high and the others of low quality.

Infant outcomes O¹
No studies evaluated cognitive function or loss of stem cells.
Conclusions: There is some support for an increased risk of immediate anaemia (6.3% vs 1.2%) (GRADE ⊕⊕ΟΟ) and support for lower immediate Hb (mean difference 18g/l) and haematocrit (GRADE ⊕⊕ΟΟ) with early as compared with late clamping. There is support for little or no difference regarding these outcomes at long-term (at 2 to 6 months of age) (GRADE ⊕⊕ΟΟ). There is some support for an increased risk of long-term iron deficiency (5.7% vs. 0.6%) (GRADE ⊕⊕ΟΟ) and support for lower long-term ferritin levels (GRADE ⊕⊕ΟΟ).

There is some support for little or no difference regarding jaundice requiring phototherapy and a low Apgar score (<7 at 5 min) (GRADE ⊕⊕ΟΟ) and insufficient support for an effect on the need for admittance to special baby care nursery or neonatal intensive care unit (GRADE ⊕ΟΟΟ).

Maternal outcomes O²
There is some support for little or no difference regarding severe postpartum bleeding (GRADE ⊕⊕ΟΟ) and insufficient support for an effect on the need for manual removal of placenta (GRADE ⊕ΟΟΟ).

Methodological outcome O³
There is insufficient scientific documentation to evaluate the rate of correct sampling for cord blood acid-base and gas analysis after early versus late clamping.

Ethical questions
Is early cord clamping of the healthy term neonate ethically acceptable in view of unknown long-term infant risks regarding cognitive function? Presently, late cord clamping does not allow cord blood collection. Future research may identify optimal timing of cord clamping, to resolve these ethical issues.

Economical aspects
There are no reasons to believe that initial costs are different.
Which health technology or method will be assessed?

1a **Who will lead the project?**
Ulla-Britt Wennerholm, MD, PhD, Associate professor, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Göteborg, Sweden

1b **Who posed the question?**
Anders Fasth and Olof Mattson, Clinical Unit Manager, Clinical Unit 4, Sahlgrenska University Hospital

Additional parties who posed the question?
No

1c **Co-workers:**
Anders Fasth, MD, PhD, Professor, Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg
Elisabeth Jangsten, RM, PhD, Senior lecturer, School of Health Sciences, University of Borås, Sweden
Lennart Stigson, MD, Department of Pediatrics, the Queen Silvia Children’s Hospital, Gothenburg, Sweden

1d **Other participants,**
from the HTA centre, Region Västra Götaland, Sweden
Lennart Jivegård, MD PhD, Senior university lecturer
Annika Strandell, MD PhD, Associate professor
Eva-Lotte Daxberg, librarian
Yommine Holmberg, librarian
External reviewers
Margareta Hellgren, MD PhD, Associate professor, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Göteborg, Sweden
Maria Skogby, RN, PhD, Department of Surgery, Frölunda Hospital, Göteborg, Sweden

1e **Are there any conflicts of interest for the proposer or any of the participants in the work group?**
Anders Fasth is the Medical Director of the Swedish National Cord Blood Bank
Disease/disorder of Interest and Present Treatment

2a Disease/disorder of interest and its degree of severity

This HTA report concerns mainly infant and maternal effects of timing of umbilical cord clamping during labour after full term pregnancy. Early cord clamping after birth might result in low initial blood volume in the newborn baby which could cause low iron stores in the infant. Iron deficiency during infancy has been associated with a delay in psychomotor and mental development (Thomas et al., 2009).

- Risk of premature death
- Risk of permanent illness or damage, or reduced quality of life
- **✓** Risk of disability and reduced health-related quality of life

2b Prevalence and incidence of the disease/disorder

In Sweden, approximately 90,000 to 120,000 children are born annually corresponding to approximately 15,000 to 20,000 in Region Västra Götaland (VGR). In the Nordic countries the prevalence of iron deficiency anaemia in all infants at 6 months of age has been reported between 3 and 4%. (Domellof et al., 2001, Hay et al., 2004). If these prevalence rates are valid also in the VGR population, iron deficiency anaemia could affect 450 to 800 infants annually in the VGR.

2c Present treatment of the disease/disorder in the outpatient setting/ in-patient setting.

Procedures for clamping of the umbilical cord and sampling of umbilical cord blood for blood gas measurement at the obstetrical units in VGR.

SU/Östra Hospital

The guideline is early cord clamping, which means that the cord is clamped immediately after the baby is born. The baby is put directly on the mother’s chest if vital. When the cord is cut blood samples are obtained from both arterial and venous blood for pH measurements. If the mother expresses a wish for late cord clamping, no blood samples are taken.

SU/Mölndal Hospital:

The routine has changed recently. After birth the baby is placed either between the mother’s legs or at her chest. The midwife compresses the umbilical cord, while cord blood samples are taken. After cord blood sampling, the midwife unclamps the cord. Definitive clamping and cutting of the cord is carried out when appropriate.

SÅS (Södra Älvsborg Hospital)

The routine is no clamping of the umbilical cord. The baby is kept between the mother’s legs after birth and sampling of the cord blood for pH measurement is carried out as soon as possible. After the blood sampling, the baby is placed on the mother’s chest. The clamping and cutting of the umbilical cord occur when pulsations have ceased.

NÄL (Norra Älvsborg Hospital)

The present routine is that the baby initially is placed between the mother’s legs for about 30 sec. The midwife compresses the umbilical cord temporarily while blood samples are taken. The baby is then placed on the mothers’ chest. Clamping and cutting of the cord are carried out when appropriate.
SKAS (Skaraborgs Hospital)
The baby is placed between the mother’s legs and the blood sampling is carried out as soon as possible without clamping the cord.
At all clinics oxytocin is administrated immediately after birth.

Conclusion
The practice regarding timing (early or delayed) of umbilical cord clamping varies in the VGR.

2d **Number of patients per year who undergo current treatment regimen?**
Late clamping is used in approximately two thirds of all deliveries in the VGR.

2e **The normal pathway of a patient through the health care system**
Following a normal vaginal delivery after a full-term pregnancy the mother and the newborn baby usually stay for one or two days at the maternity ward. There is no screening for iron deficiency or anaemia at the Child welfare centres.

2f **Actual wait time in days for medical assessment /treatment**
Not applicable
Present Health Technology

3a **Name/description of the health technology at issue**

The technology at issue is early umbilical cord clamping, usually defined as clamping within less than one minute (mostly within 15 seconds) after birth. At the time of birth, the infant is still attached to the mother via the umbilical cord, which is part of the placenta. The infant is usually separated from the placenta by putting two clamps on the umbilical cord, one close to the infant’s umbilicus and the other further along the cord; the cord is then cut between these two clamps.

The timing of late clamping is more variable, from one minute to five minutes. Others define late clamping as when the cord stops pulsating or after placental descent.

3b **The work group’s understanding of the potential value of the health technology**

The timing of umbilical cord clamping: delayed/late or early (within < 1 min) at birth is still a controversial issue and the practice worldwide varies. Studies have shown that, of the total blood volume in the combined foetal-placental circulation at term gestation, approximately 25% to 60% (54-160 ml) is found in the placental circulation and as many as 60% of the foetal red blood cells are found therein. This blood is also known to be rich in stem cells (Harris, 2008).

Studies have shown that early as compared with late clamping of the cord results in a decreased blood volume of the neonate of 20 to 40 ml of blood per kilogram body weight, which would correspond to 30 to 35 mg of iron. The technology at issue, early cord clamping, may thus cause anaemia and iron deficiency in the newborn. Iron deficiency in infancy may cause poor neurodevelopment (Lozoff and Georgieff, 2006). It is thus tempting to supplement iron already in situations where iron deficiency is suspected. Iron cannot, however, be actively secreted and the risk for iron overload must be considered. Too much iron increases the risk for infections and impairs growth. Also, infants with low iron stores increase their iron absorption from the intestine by decreasing hepcidin. (Berglund, 2011)

Delayed clamping on the other hand could be harmful by causing an overload of the neonatal blood volume, which may increase the risk for respiratory problems, neonatal jaundice and polycytemia.

Early clamping also means a loss of hematopoietic stem cells. The consequences for the newborn baby of this are unknown. It has been argued that the loss of stem cells could cause consequences later in life (Sanberg et al., 2010). Strong homeostatic mechanisms do occur within the hematopoietic system (Mikkola and Orkin, 2006) and the stem cells in donated cord blood are sufficient to replace totally the haematopoiesis of even an adult patient transplanted with donated cord blood. This makes negative effects of less stem cells infused into the babies whose cord was clamped early unlikely.

Early clamping allows cord blood collection in benefit for transplantation of stem cells to other individuals and research. This is presently not possible in conjunction with late cord clamping.

The management of the third stage of labour could be either expectant (physiological) or active. Active management of the third stage of labour (AMTSL) has demonstrated to be favourable in preventing post-partum haemorrhage (PPH), in comparison to expectant management. AMTSL includes three steps; early cord clamping (within one minute after birth of the baby), administration of uterotonic and controlled cord
traction. AMTSL was introduced by the World Health Organisation (WHO) in 1989, with the purpose to decrease maternal mortality caused by PPH. The AMTSL was adopted by FIGO (International Federation of Gynecology and Obstetrics) and ICM (International Confederation of Midwives) in “Joint statement: management of the third stage of labour to prevent post-partum haemorrhage” (ICM/FIGO, 2003). However, due to the risk for infant anaemia, the recommendation of early cord clamping by WHO (WHO, 2007) was abandoned in 2006 and changed into delaying cord clamping for three minutes. In Sweden the guideline “Care program for umbilical cord clamping of newborn children” recommends a change from early to late clamping. (Wiklund et al 2008). There may be a risk of low success rates regarding correct arterial and venous cord blood samples with delayed clamping. The values of the cord blood acid-base variables are different in delayed clamping as compared with early clamping (Wiberg et al., 2008)

3c The central question for the current HTA project in one sentence
Is early umbilical cord clamping not different from or better than late umbilical cord clamping regarding postpartum infant iron deficiency and iron deficiency anaemia variables, long-term cognitive function, loss of stem cells, maternal postpartum haemorrhage, manual removal of retained placenta and correct sampling for blood gas analysis?

3d PICO P= Patients, I= Intervention, C= Comparison, O=Outcome

P= Newborn infants and mothers with full-term pregnancy (≥ 37)
I= Early umbilical cord clamping (< 1min)
C= Delayed or late umbilical cord clamping (≥1 min)

O¹ (Infant) =
Primary outcomes:
Iron-deficiency, long-term*
Ferritin level, long-term
Anaemia, immediate* and long-term
Haemoglobin level, immediate and long-term
Haematocrit, immediate and long-term
Cognitive function
Loss of stem cells
(*Immediate defined as within 0-48 h and long-term as after 2-6 months)

Secondary outcomes:
Need for phototherapy
Apgar score <7 at five min
Admission to neonatal intensive care units (NICU)

O² (Mother)
Severe postpartum haemorrhage ≥1000ml
Manual removal of retained placenta

O³ (Methodological)
Correct sampling of arterial and venous blood from the cord for blood gas analysis
Eligibility criteria:

Study design:
Randomized controlled trials – for O₁ and O² (Infant and Maternal outcomes)
Cohort studies with ≥100 patients – for O³ (Methodological outcomes)
Systematic reviews

Language: Swedish, Norwegian, Danish, English, German

Key words
Umbilical Cord, Fetal Blood, Infant, newborn, Time Factors
Navelsträng, Avnavling, Navelsträngsblod, Nyfödda, Tidsfaktorer
Review of the Quality of Evidence

4 Search strategy, study selection and references – appendix 3
(Search strategy, Eligibility criteria, Selection process – flow diagram, References)

This report is based on one systematic review (McDonald et al, 2008 Cochrane review) and subsequently published articles.
During November 2011, the library performed searches in PubMed, Embase, the Cochrane Library, CINAHL, PsycINFO, Mosby Nursing Index, CRD and a number of other HTA-databases. Reference lists of relevant articles were also scanned for additional references. A total of 1205 articles were identified after removal of duplicates, of which the library excluded 1077 abstracts. Another 85 articles were excluded by the library after having been read in full text. 43 articles, including McDonald’s review, were sent to the work group for assessment.
McDonald’s systematic review includes 10 studies and one conference abstract. Data from the 10 studies included in the SR were obtained from the SR and included in meta-analyses in this report. These studies were appraised in the systematic review and are not reappraised in the present HTA report. In addition to the articles from the systematic review, three articles (RCTs) are included in the current report. All of those have been critically appraised. The appraisal of articles is based on checklists from SBU regarding randomized controlled trials and regarding systematic reviews according to AMSTAR.
Search strategies, eligibility criteria and a graphic presentation of the selection process are accounted for in appendix 3. The literature search and exclusion of abstracts were made by two librarians (ELD, YH) in consultation with the HTA-centre and the work group.

5a Describe briefly the present knowledge of the health technology

The systematic literature search identified four studies that fulfilled the selection criteria; the latest systematic review (SR) and three subsequently published randomised controlled trials (RCT). The methodology of the SR was of high quality but included mainly studies with high risk of bias (Table 1). One of the RCTs was of high (Andersson et al., 2011), the others of low quality (Jahazi et al., 2008, De Paco et al., 2011). No RCTs evaluated cognitive function or loss of stem cells.

Participants, intervention and uterotonics
Participants were mainly healthy pregnant women expected to give birth vaginally. In the SR, one trial included anaemic women, one was conducted in a malaria-endemic area and one included some women who gave birth by caesarean section (McDonald and Middleton 2008).

In the SR the timing of early clamping was relatively consistent between studies at less than one minute (mostly within 15 seconds of birth). The timing of late clamping was quite variable from >60 seconds up to 5 minutes, after pulsation in the cord had stopped or after placental descent in the vagina. In the three RCTs early clamping was defined as ≤ 10 to 30 seconds and late clamping as > 120 to 180 seconds.

In the SR, administration of uterotonics, either before or after cord clamping, were recorded in five trials. In the study by Andersson et al., (2011) oxytocin (10 IU) was administered intravenously immediately after clamping of the cord. The other trials (Jahazi et al., 2008, De Paco et al., 2011) did not specify use or timing of any uterotonics.
Primary infant outcomes O

Iron deficiency, long-term
One RCT (high quality) evaluated long-term iron deficiency (Table 2). Iron deficiency after four months was found in 5.7% in the early and in 0.6% in the late clamping group.
Conclusion: There is some support for an increased risk of long-term (at four months of age) iron deficiency (5.7% vs. 0.6%) (GRADE ⊕⊕) with early as compared with late clamping.

Ferritin level, long-term
One SR and one RCT (high quality) evaluated long-term infant ferritin levels (Table 3). At three, four and six months infant ferritin levels were significantly lower in the early as compared with the late clamping group.
Conclusion: There is support for lower mean long-term ferritin levels with early as compared with late clamping (GRADE ⊕⊕⊕).

Anaemia, immediate and long-term
One SR and one RCT (high quality) evaluated immediate and long-term infant anaemia (Table 4). At two days of age, infants with early clamping had anaemia significantly more often (6.3% vs. 1.2%) as compared with infants with late clamping whereas there was no difference (Figure 1) at four to six months of age (long-term anaemia).

Figure 1. Anaemia, long-term

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early clamping</th>
<th>Late clamping</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Andersson 2011</td>
<td>21</td>
<td>175</td>
<td>21</td>
</tr>
<tr>
<td>Chaparro 2006</td>
<td>26</td>
<td>171</td>
<td>24</td>
</tr>
<tr>
<td>van Rheenen 2007</td>
<td>21</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>391</td>
<td>403</td>
</tr>
<tr>
<td>Total events</td>
<td>68</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: There is some support for an increased risk of immediate anaemia (GRADE ⊕⊕⊕) with early as compared with late clamping. There is support for little or no difference in anaemia at long-term (at 2 to 6 months of age) (GRADE ⊕⊕⊕).

Haemoglobin level, immediate and long-term
One SR and one RCT (high quality) evaluated immediate and long-term haemoglobin (Hb) levels (Table 5). At 0-48 h of age, infants with early cord clamping had significantly lower mean Hb (Figure 2). At two to six months there was no significant difference in mean Hb between the groups (Figure 3).
Figure 2. Haemoglobin level, immediate

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early clamping Mean</th>
<th>Early clamping SD</th>
<th>Early clamping Total</th>
<th>Late clamping Mean</th>
<th>Late clamping SD</th>
<th>Late clamping Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson 2011</td>
<td>175</td>
<td>19</td>
<td>160</td>
<td>189</td>
<td>17</td>
<td>162</td>
<td>21.2% -14.00 [-17.94, -10.06]</td>
<td></td>
</tr>
<tr>
<td>Cernadas 2006</td>
<td>170</td>
<td>23</td>
<td>89</td>
<td>183</td>
<td>22</td>
<td>189</td>
<td>20.4% -13.00 [-18.72, -7.28]</td>
<td></td>
</tr>
<tr>
<td>Chaparro 2006</td>
<td>193</td>
<td>23</td>
<td>171</td>
<td>199</td>
<td>24</td>
<td>183</td>
<td>20.8% -6.00 [-10.90, -1.10]</td>
<td></td>
</tr>
<tr>
<td>Emhamed 2004</td>
<td>171</td>
<td>19</td>
<td>46</td>
<td>185</td>
<td>21</td>
<td>58</td>
<td>19.3% -14.00 [-21.70, -6.30]</td>
<td></td>
</tr>
<tr>
<td>Saigal 1972</td>
<td>168</td>
<td>13</td>
<td>15</td>
<td>213</td>
<td>17</td>
<td>30</td>
<td>18.5% -45.00 [-53.96, -36.04]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>481</td>
<td>622</td>
<td>100.0%</td>
<td>171.4</td>
<td>168</td>
<td>45</td>
<td>-17.86 [-27.55, -8.17]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 111.42; Chi² = 56.34, df = 4 (P < 0.00001); I² = 93%
Test for overall effect: Z = 3.61 (P = 0.0003)

Figure 3. Haemoglobin level, long-term

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early clamping Mean</th>
<th>Early clamping SD</th>
<th>Early clamping Total</th>
<th>Late clamping Mean</th>
<th>Late clamping SD</th>
<th>Late clamping Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson 2011</td>
<td>113</td>
<td>7</td>
<td>175</td>
<td>113</td>
<td>8</td>
<td>168</td>
<td>26.1% 0.00 [-1.59, 1.59]</td>
<td></td>
</tr>
<tr>
<td>Chaparro 2006</td>
<td>127</td>
<td>9</td>
<td>171</td>
<td>127</td>
<td>11</td>
<td>118</td>
<td>25.4% 0.00 [-2.08, 2.08]</td>
<td></td>
</tr>
<tr>
<td>Geethanath 1997</td>
<td>89</td>
<td>16</td>
<td>48</td>
<td>83</td>
<td>21</td>
<td>59</td>
<td>14.5% 6.00 [-1.01, 13.01]</td>
<td></td>
</tr>
<tr>
<td>Gupta 2002</td>
<td>88</td>
<td>8</td>
<td>29</td>
<td>99</td>
<td>9</td>
<td>29</td>
<td>20.3% -11.00 [-15.38, -6.62]</td>
<td></td>
</tr>
<tr>
<td>van Rheenen 2007</td>
<td>106</td>
<td>15</td>
<td>45</td>
<td>102</td>
<td>21</td>
<td>46</td>
<td>13.6% 4.00 [-3.49, 11.49]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>468</td>
<td>487</td>
<td>100.0%</td>
<td>487</td>
<td>487</td>
<td>100.0%</td>
<td>-0.82 [-4.72, 3.08]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 14.51; Chi² = 27.33, df = 4 (P < 0.0001); I² = 85%
Test for overall effect: Z = 0.41 (P = 0.68)

Conclusions: There is support for lower immediate Hb (mean difference 18g/l) with early as compared with late clamping (GRADE ⊕⊕⊕). There is support for little or no difference regarding Hb at long-term (at 2 to 6 months of age) (GRADE ⊕⊕⊕).

Haematocrit level, immediate and long-term

One SR and two RCTs (high quality and low quality, respectively) evaluated immediate and long-term infant haematocrit levels (Table 6). At 6-48 h of age, more infants in the early cord clamping group had a low haematocrit. One RCT (high quality) showed a slightly lower mean haematocrit at 48 h. One RCT (low quality) showed no difference in mean haematocrit at 2 and 18 h. At 4 months of age, there was no difference in mean haematocrit between the groups.

Conclusions: There is support for lower immediate haematocrit with early as compared with late clamping (GRADE ⊕⊕⊕). There is support for little or no difference regarding haematocrit at long-term (at 2 to 6 months of age) (GRADE ⊕⊕⊕).

Secondary infant outcomes ⊕

Jaundice requiring phototherapy

One SR and one RCT (high quality) evaluated the need for phototherapy (Table 7). In the SR, a meta-analysis showed that fewer infants in the early clamping group were reported to require phototherapy. The largest study included in the SR is published only as a conference abstract (McDonald, 1996). This study is not included in the present meta-analysis in Figure 4 that shows no difference between the early and late clamping groups. The results in the SR are divergent mainly due to unpublished study included in the meta-analysis in the SR.
Figure 4. Infant jaundice requiring phototherapy (excluding abstract Mc Donald 1996)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early clamping</th>
<th>Late clamping</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson 2011</td>
<td>2</td>
<td>192</td>
<td>23.5%</td>
<td>2.04 [0.18, 22.72]</td>
</tr>
<tr>
<td>Emhamed 2004</td>
<td>2</td>
<td>57</td>
<td>10.0%</td>
<td>0.61 [0.31, 1.12]</td>
</tr>
<tr>
<td>Mc Donald 1996 (abstract)</td>
<td>22</td>
<td>833</td>
<td>0.0%</td>
<td>0.58 [0.34, 1.00]</td>
</tr>
<tr>
<td>Nelson 1980</td>
<td>1</td>
<td>28</td>
<td>44.4%</td>
<td>0.52 [0.04, 6.10]</td>
</tr>
<tr>
<td>Oxford Midwives RG 1991</td>
<td>3</td>
<td>296</td>
<td>22.0%</td>
<td>3.50 [0.36, 33.84]</td>
</tr>
<tr>
<td>van Rheenen 2007</td>
<td>0</td>
<td>46</td>
<td>Not estimable</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 561 events out of 619 total events. Heterogeneity: Chi² = 1.97, df = 3 (P = 0.58); I² = 0%
Test for overall effect: Z = 1.30 (P = 0.19)

Conclusion: There is some support for little or no difference regarding jaundice requiring phototherapy with early as compared with late clamping (GRADE ⊕⊕).

Apgar score <7 at 5 minutes

One SR and one RCT (high quality) evaluated the rate of low Apgar score (Table 8). No difference between early and late cord clamping was found for this outcome (Figure 5).

Figure 5. Apgar score <7 at 5 min

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Early clamping</th>
<th>Late clamping</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson 2011</td>
<td>8</td>
<td>193</td>
<td>23.2%</td>
<td>1.66 [0.53, 5.17]</td>
</tr>
<tr>
<td>Mc Donald 1996 (abstract)</td>
<td>5</td>
<td>244</td>
<td>0.0%</td>
<td>1.74 [0.41, 7.36]</td>
</tr>
<tr>
<td>Spears 1966</td>
<td>17</td>
<td>187</td>
<td>76.8%</td>
<td>0.97 [0.48, 1.97]</td>
</tr>
</tbody>
</table>

Total (95% CI): 381 events out of 380 total events. Heterogeneity: Chi² = 0.62, df = 1 (P = 0.43); I² = 0%
Test for overall effect: Z = 0.41 (P = 0.68)

Conclusion: There is some support for little or no difference regarding Apgar score < 7 at 5 minutes with early as compared with late clamping (GRADE ⊕⊕).

Admission to special baby care nursery (SCN) or neonatal intensive care unit (NICU)

One SR evaluated the need for admittance to SCN or NICU (Table 9). No difference between early (2.5%) and late (3.5%) cord clamping was found for this outcome.

Conclusion: There is insufficient support for an effect on the need for admittance to special baby care nursery or neonatal intensive care unit (GRADE ⊕).

Maternal outcomes O²

Severe postpartum haemorrhage

One SR evaluated severe postpartum haemorrhage (≥1000 ml) (Table 10). No difference between early (2.5 %) and late (3.1%) cord clamping was seen for this outcome.

Conclusion: There is some support for little or no difference regarding severe postpartum bleeding with early as compared with late clamping (GRADE ⊕⊕).
Need for manual removal of the placenta

One SR evaluated the need for manual removal of the placenta (Table 11). No difference was seen between early (2.4%) and late (1.5%) cord clamping for this outcome.

Conclusion: There is insufficient support for an effect on the need for manual removal of placenta with early as compared with late clamping (GRADE ⊕⊕⊕).

Methodological outcomes O³

One RCT (low quality) evaluated the cord blood acid-base and gas analysis in early and delayed cord clamping (Table 12). There was no significant difference in the number of samples taken from both artery and vein after early (79.7%) and late (65.7%) clamping respectively. It was not specified if the samples were correctly taken from both artery and vein.

Conclusion: There is insufficient scientific documentation to evaluate the rate of correct sampling for cord blood acid-base and gas analysis after early versus late clamping.

5b **Outcome tables – appendix 1**

5c **Excluded articles – appendix 2**

5d **Ongoing research**

A search in Clinicaltrials.gov (2011-12-28) using the search terms (cord AND (clamp OR clamping OR cut OR cutting) identified 50 trials. Three were relevant for our question (http://ClinicalTrials.gov/show/NCT01029496; http://clinicaltrials.gov/show/NCT01081977; http://clinicaltrials.gov/show/NCT00298051). The recruitment in these trials is unknown because the information has not been verified recently according to the Clinical trials document. The trials were planned in China, Pakistan and Mexico.

6 **Which medical societies or health authorities recommend the new health technology (=late clamping)?**

☑ The National Board of Health and Welfare
☑ Medical societies
☐ Other health authority

Which medical society or health authority?
The Swedish Association of Midwives, The Swedish Society of Obstetrics and Gynecology (SFOG) and the Swedish Paediatric Society (BLF) (Wiklund et al., 2008)
Ethical aspects

7 Ethical consequences

Using the early clamping technique, the children may suffer a risk of lower iron stores and some children might not have enough iron to support the fast growing central nervous system. This might lead to cognitive and/or behavioural problems. Importantly, there is no evidence for such damage in full term healthy newborns, but circumstantial evidence from animal studies as well as from human studies of preterm and low birth infants suggests that this might be a possibility (Domellof, 2011).

A change to late clamping at 3 minutes or more is incompatible with collection of placenta blood for donation to the National Cord Blood Bank. Cord blood transplantation is a life-saving procedure for 25 - 50% of those in need of hematopoietic stem cell transplantation who lack a sibling donor or a donor from a registry. The unknown risk for the donating newborn is not compensated for by any positive effects for the donor, but the donation has important positive life saving effects for the recipient.

Whether or not a compromise between the two routines is possible by delaying the clamping to 30 or 60 seconds is unknown, but such a compromise could be a solution to the ethical conflict not to harm the child and to do good to patients in need of a transplant.

Organisation

8a When can this new health technology be put into practice?
Late cord clamping can be put into practice immediately.

8b Is this technology used in other hospitals in Western Region of Sweden?
In the VGR, all hospitals practice blood sampling for blood gas analysis immediately without clamping or by compressing the cord until blood sampling is done (Södra Älvsborgs Hospital (Södra Älvsborgs Sjukhus), Norra Älvsborg County Hospital (Norra Älvsborgs Länssjukhus) and Skaraborg hospital (Kärnsjukhuset i Skövde). Sahlgrenska University Hospital/ Mölndal (SU/ Mölndal) has also recently changed to late clamping. (See 2 c)

8c According to the work group, will there be any consequences of the new health technology for personnel?
Midwives and nursing assistants need a period of training to do blood sampling without clamping. The consequences of a change in practice for correct blood gas analysis are unknown.

8d Will there be any consequences for other clinics or supporting functions at the hospital or in the whole Western Region of Sweden?
No
9a **Present costs of currently used technologies**
The initial costs associated with late (and early) cord clamping per se are not possible
to calculate but there are no reasons to believe that initial costs should be different.

9b **Expected costs of the new health technology?**
See 9a.

9c **Total change of cost**
See 9a.

9d **Can the new technology be adopted and used within the present budget (clinic
budget/hospital budget)?**
Yes

9e **Are there any available analyses of health economy? Cost advantages or
disadvantages?**
No
Unanswered Questions

10a Important gaps in scientific knowledge?

This HTA has shown that early clamping of the umbilical cord in healthy full term infants results in lower serum ferritin at 4-6 months. (Andersson et al.) 2011) also found that more infants had low ferritin levels, defined as <20 ug/L. This cut-off level is controversial; others have set the limit at 12 ug/L (Lönnerdal and Hernell 2010, Domellof, 2011). The definition of iron deficiency is controversial as no direct measures of iron stores can be done. Ferritin is commonly used, but also the combination of different serum proteins such as ferritin, transferrin saturation and transferrin receptor.

Thus, we need better definition of iron deficiency in infants; regarding which analysis to use as well as appropriate cut-off levels.

The consequences, if any, of lower ferritin for full term healthy infants born after uncomplicated birth and early clamping vs. those whose cord was clamped late are unknown. The association between iron deficiency and poor cognitive and behavioural performance is reviewed in Domellof, 2011, suggesting it is important to prevent iron deficiency in infants.

Thus we need more knowledge whether or not children born after early clamping are at risk for severe iron deficiency with potential consequences for the developing brain.

Early clamping also means a loss of hematopoietic stem cells. The consequences of this are unknown.

10b Is there any interest in your own clinic/research group/organisation to start studies/trials within the research field at issue?

A research group associated to the Swedish National Cord Blood bank and to the team of Ola Andersson is performing a project where an intermediate clamping time (1 minute) and its effect on the child will be studied using the same outcomes as in the published article (Andersson et al, 2011).

Using qualitative methods, the experience of parents who had donated the child’s cord blood will be studied in the same project.

A study is planned by Andersson and coworkers where the newborns with early clamping are randomized to iron supplementation or placebo.
Statement from the Regional HTA Centre of Region Västra Götaland, Sweden

Timing of umbilical cord clamping for neonatal and maternal outcomes

Method and patient category:
This HTA report concerns effects of timing of clamping the umbilical cord after delivery in term pregnancy. Of the total blood volume in the combined fetal-placental circulation, approximately 25% to 60% is found in the placental circulation and 60% of the fetal red blood cells are found therein. This blood is also rich in stem cells. Early cord clamping might result in low initial blood volume in the infant which could cause low iron stores and anaemia. Iron deficiency during infancy has been associated with a delay in psychomotor and mental development. The loss of stem cells could potentially cause blood disorders and diabetes later in life. Early cord clamping is an integrated part of active management in the third stage of labour, with the intention to reduce the risk of maternal post partum hemorrhage. Delayed clamping on the other hand could be harmful by causing an overload of the neonatal blood volume which may increase the risk for respiratory disorders, neonatal jaundice and polycytemia. A subsequent question is stem cell banking possibilities, since early cord clamping at present, is a prerequisite for cord blood donation.

Question at issue:
Is early umbilical cord clamping not different from or better than late umbilical cord clamping regarding postpartum infant iron deficiency and iron deficiency anaemia variables, long-term cognitive function, loss of stem cells, maternal postpartum haemorrhage, manual removal of retained placenta and correct sampling for blood gas analysis

PICO 1 (Patient, Intervention, Comparison, Outcome)

P = Newborn infants and mothers with term pregnancy (≥ 37 weeks)
I = Early umbilical cord clamping (<1min)
C = Delayed or late umbilical cord clamping (≥ 1 min)
O = O¹ (Infant) Primary outcomes: Iron-deficiency; long term*, ferritin level; long term, anaemia; immediate* and long term, haemoglobin level; immediate and long term, haematocrit; immediate and long term, cognitive function; loss of stem cells
(*Immediate defined as within 0-48 h and long term as after 2-6 months)
Secondary outcomes: Need for phototherapy, Apgar score <7 at five min, admission to neonatal intensive care units (NICU)
O² (Mother): Postpartum hemorrhage ≥1000ml, manual removal of retained placenta
O³ (Methodological): Correct sampling of arterial and venous blood from the cord for blood gas analysis

Level of evidence:
The literature search identified four articles fulfilling the selection criteria: a systematic review (SR) and three subsequently published randomised controlled trials (RCT). The definition of early cord clamping varied from within ≤ 10 to < 60 sec between studies. The SR was methodologically of high quality but included mainly studies with high risk of bias. One of the RCTs was of high and the others of low quality.
Infant outcomes
No studies evaluated cognitive function or loss of stem cells.
Conclusions: There is some support for an increased risk of immediate anaemia (6.3% vs 1.2%) (GRADE ⊕⊕○○) and support for lower immediate Hb (mean difference 18g/l) and haematocrit (GRADE ⊕⊕○○) with early as compared with late clamping. There is support for little or no difference regarding these outcomes at long term (GRADE ⊕⊕○○). There is some support for an increased risk of long term iron deficiency (5.7% vs. 0.6%) (GRADE ⊕⊕○○) and support for lower long term ferritin levels (GRADE ⊕⊕○○).
There is some support for little or no difference regarding jaundice requiring phototherapy and a low Apgar score (<7 at 5 min) (GRADE ⊕⊕○○) and insufficient support for an effect on the need for admittance to special baby care nursery or neonatal intensive care unit (GRADE ⊕○○○).

Maternal outcomes
There is some support for little or no difference regarding severe postpartum bleeding (GRADE ⊕○○○) and insufficient support for an effect on the need for manual removal of placenta (GRADE ⊕○○○).

Methodological outcome
There is insufficient scientific documentation to evaluate the rate of correct sampling for cord blood acid-base and gas analysis after early versus late clamping.

Ethical aspects:
Using the early clamping technique, the children may suffer a risk of lower iron stores and some children might not have enough iron to support the fast growing central nervous system. This might lead to cognitive and/or behavioural problems. Late clamping is incompatible with collection of placenta blood for donation to the National Cord Blood Bank. Cord blood transplantation is life-saving for 25 - 50% of those in need of hematopoietic stem cell transplantation who lack a sibling donor or a donor from a registry. The (unknown) risk for the donating newborn is not compensated for by any positive effects for that child, but the donation has important positive life saving effects for other patient groups.

Economical aspects:
There are no reasons to believe that the early cost, associated with the delivery, are different with early as compared to late clamping. The late effects (cognitive function) are not studied and no long-term economical conclusions can be made.

Concluding remarks:
No studies evaluated effects of early versus delayed clamping on cognitive function. Early as compared with late clamping is related with immediate but not long term infant anemia and anemia-related variables (low to moderate quality of evidence) but there is no support for an effect on infant jaundice and early Apgar score (very low to low quality of evidence). There is no support for a difference regarding maternal severe postpartum bleeding and need for manual removal of placenta (low and very low quality of evidence). Late clamping is incompatible with collection of cord blood to be used for stem cell transplantation. A possible long-term risk with early clamping is an unstudied, theoretical risk that early iron deficiency related to early cord clamping might lead to cognitive and/or behavioural problems. The balance between this unknown risk for the infant versus the benefit for recipients of stem cells is uncertain due to gaps of knowledge mainly regarding long term infant cognitive function and effects of loss of stem cells.
The Regional Health Technology Assessment Centre (HTA-centrum) of Region Västra Götaland, Sweden (VGR) has the task to make statements on HTA reports carried out in VGR. The statement should summarise the question at issue, level of evidence, efficacy, risks, and economical and ethical aspects of the particular health technology that has been assessed in the report.
The HTA was accomplished during the period of 2011-11-16—2012-04-25.
Last search updated in November 2011.

On behalf of the HTA quality assurance group, in Region Västra Götaland, Sweden Göteborg, Sweden, 2012-04-25

Christina Bergh, Professor, MD
Head of HTA-centrum of Region Västra Götaland, Sweden

HTA quality assurance group, Region Västra Götaland, Sweden

Christina Bergh
MD, Professor
Thomas Franzén
Head of hospital library
Magnus Hakeberg
OD, Professor
Lennart Jivegård
MD, Senior university lecturer
Peter Johansson
MD, PhD

Anders Larsson
MD, PhD
Christian Rylander
MD, PhD
Ola Samuelsson
MD, PhD
Henrik Sjövall
MD, Professor
Petteri Sjögren
DDS, PhD

Maria Skogby
RN, PhD
Annika Strandell
MD, PhD
Therese Svanberg
HTA-librarian
Margareta Warrén Stomberg
Senior university lecturer
Kjell-Arne Ung
MD, PhD
Utlåtande och sammanfattande bedömning från Kvalitetssäkringsgruppen.

Betydelsen av tidig jämfört med sen avnavling för barnet och modern

Frågeställning: Är tidig avnavling lika bra eller bättre än sen avnavling vad gäller hos barnet järnbrist och järnbrukenrelaterade variabler, långsiktigt kognitiv funktion, förlust av stamceller, hos modern postpartum blödning och manuell placentalösning samt möjligheten för korrekt provtagning för blodgasanalys.

PICO 1 (Patient, Intervention, Comparison, Outcome)

Sammanfattning:

Metod och patienter:
Denna HTA avser effekter för barn och moder av tidpunkten för avnavling vid födsel efter fullgången graviditet. 25% - 60% av den totala blodvolymen hos nyfödd och moderkaka finns i moderkaka och navelsträng och 60% av de foetala röda blodkropparna finns där. Detta blod är också rikt på stamceller. Tidig avnavling ökar möjligheterna att spara stamceller i en stamcellsbank men skulle kunna resultera i minskad initial blodvolym hos den nyfödde vilket skulle kunna ge låga järnförråd och anaemi. Järnbrist under spädbarnsåldern har förknippats med försenad psykomotorisk och mental utveckling. Förlust av stamceller kan potentiellt orsaka blodsjuksomor och diabetes senare under livet. Tidig avnavling är en integrerad del av aktivt efterbörddsskede under förlossningen med avsikt att minska risken för postpartumblödning hos modern. Sen avnavling å andra sidan skulle kunna innebära överbelastning av den nyföddes blodvolym vilket kan öka risken för lungsjuksomar, gulso och polycytemi. En associerad metodologisk fråga är möjligheter till en stamcellsbank, eftersom tidig avnavling för närvarande är en förutsättning för att donera navelsträngsblod.

Evidensläge:
Utfall hos barnet:
Ingen studie utvärderade kognitiv funktion eller förlust av stamceller. Slutsatser: Tidig jämfört med sen avnavling kan leda till ökad risk för omedelbar anemi (6.3% vs 1.2%) (GRADE ⊕⊕ΟΟ) och leder troligen till lägre Hb (medelskillnad 18g/l) och hematokrit (GRADE ⊕⊕ΟΟΟΟ), men leder troligen till liten eller ingen skillnad för dessa utfall långsiktigt (GRADE ⊕⊕ΟΟΟΟΟ). Tidig jämfört med sen avnavling ger troligen en ökad risk för järnbrist långsiktigt (5.7% vs. 0.6%) (GRADE ⊕⊕ΟΟΟΟΟΟΟ) och ger troligen lägre ferritinnivåer långsiktigt (GRADE ⊕⊕ΟΟΟΟΟΟΟ).

Tidig jämfört med sen avnavling kan resultera i liten eller ingen skillnad vad gäller behov av ljusbehandling för gulsot och frekvens av låg Apgar score (<7 vid 5 min) (GRADE ⊕⊕ΟΟΟΟΟΟΟ) medan det är osäkert huruvida behovet av neonatal intensiv- eller specialvård påverkas (GRADE ⊕ΟΟΟΟΟΟΟ).

Maternella utfall O²
Tidig jämfört med sen avnavling kan resultera i liten eller ingen skillnad vad gäller svår postpartumblödning (GRADE ⊕ΟΟΟΟΟΟΟ) medan det är osäkert huruvida behovet av manuell placentalösning påverkas (GRADE ⊕ΟΟΟΟΟΟΟ).

Metodologiskt utfall O³
Det vetenskapliga underlaget är otillräckligt för att bedöma om korrekt provtagning för blodgasanalys från navelblod påverkas av tidig jämfört med sen avnavling.

Etiska aspekter:

Ekonomiska aspekter:
Det finns ingen anledning att tro att den initiala kostnaden, i samband med förlossningen, skulle skilja mellan tidig och sen avnavling. Eventuella sena effekter (kognitiv funktion) är ej studerade och långsiktiga ekonomiska slutsatser kan ej dras

Sammanfattande slutsatser:
Definitionen av tidig avnavling varierar mellan ≤ 10 sek till < 60 sek. Ingen studie utvärderade effekter av tidig jämfört med sen avnavling på kognitiv funktion. Tidig jämfört med sen avnavling kan vara relaterat till omedelbar anemi och anemirelaterade tillstånd (låg till medelhög evidensstyrka) men har liten eller ingen effekt på gulsot eller Apgar score (mycket låg till låg evidensstyrka). Tidig jämfört med sen avnavling kan resultera i liten eller ingen skillnad vad gäller maternell postpartum-blödning och behov av manuell placentalösning (låg och mycket låg evidensstyrka). Sen avnavling är oförenligt med insamling av moderkaksblod för navelsträngsblodstransplantation, vilket kan vara livräddande för andra individer. En möjlig långsiktig risk med tidig avnavling är en ostuderad, teoretisk risk att tidig järnbrist till följd av tidig avnavling skulle kunna leda till kognitiva och/eller beteendestörningar. Balansen mellan denna teoretiska risk för barnet versus nytta för mottagare av stamceller är osäker beroende på kunskapslückor främst avseende långsiktiga effekter på barnets kognitiva funktion och av förlusten av stamceller.
HTA-kvalitetssäkringsgruppen har ett uppdrag att yttra sig över genomförda HTA i Västra Götalandsregionen. Yttrandet skall innefatta sammanfattning av frågeställning, samlad evidensläge, patientnytta, risker samt ekonomiska och etiska aspekter för den studerande teknologin.

För HTA-kvalitetssäkringsgruppen 2012-04-25

Christina Bergh
Ordförande

HTA-kvalitetssäkringsgruppen:

<table>
<thead>
<tr>
<th>Christina Bergh</th>
<th>Anders Larsson</th>
<th>Maria Skogby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor, överläkare</td>
<td>Med dr, överläkare</td>
<td>Med dr, vårdenhetschef</td>
</tr>
<tr>
<td>Thomas Franzén</td>
<td>Christian Rylander</td>
<td>Annika Strandell</td>
</tr>
<tr>
<td>Bibliotekschef</td>
<td>Med dr, överläkare</td>
<td>Docent, överläkare</td>
</tr>
<tr>
<td>Magnus Hakeberg,</td>
<td>Ola Samuelson,</td>
<td>Therese Svanberg</td>
</tr>
<tr>
<td>Professor, övertandläkare</td>
<td>Docent, överläkare</td>
<td>HTA-bibliotekarie</td>
</tr>
<tr>
<td>Lennart Jivegård,</td>
<td>Petteri Sjögren</td>
<td>Kjell-Arne Ung</td>
</tr>
<tr>
<td>Docent, universitetslektor</td>
<td>Med dr, tandläkare</td>
<td>Docent, överläkare</td>
</tr>
<tr>
<td>Peter Johansson</td>
<td>Henrik Sjövall</td>
<td>Margareta Warrén Stomberg</td>
</tr>
<tr>
<td>Med dr, överläkare</td>
<td>Professor, överläkare</td>
<td>Docent, överläkare</td>
</tr>
</tbody>
</table>
Table 1 Summary of risk of bias as described by McDonald and Middleton, in studies included in the systematic review by McDonald and Middleton, 2008

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Losses to follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceriani-Cernadas, 2006</td>
<td>Yes</td>
<td>Partially</td>
<td></td>
</tr>
<tr>
<td>Chaparro, 2006</td>
<td>Yes</td>
<td>Not reported</td>
<td>29% at 6 months</td>
</tr>
<tr>
<td>Emhamed, 2004</td>
<td>Unclear</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Geethanath, 1997</td>
<td>Unclear</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Gupta, 2002</td>
<td>Unclear</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>McDonald, 1996</td>
<td>Yes</td>
<td>Partially</td>
<td></td>
</tr>
<tr>
<td>Nelson, 1980</td>
<td>Not specified</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Oxford Midwives, 1991</td>
<td>Yes</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Saigal, 1972</td>
<td>Not specified</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Spears, 1966</td>
<td>Not specified</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>van Rheenen, 2007</td>
<td>Yes</td>
<td>Partially</td>
<td>33% at 6 months</td>
</tr>
</tbody>
</table>
Appendix 1

Table 2. Outcome variable: Infant iron deficiency, long-term

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients</th>
<th>Withdrawals - dropouts</th>
<th>Intervention</th>
<th>Control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>59 (EC 25 DC 34)</td>
<td>At 4 months: 10*/175 (5.7%)</td>
<td>At 4 months: 1*/166 (0.6%)</td>
<td>RR reduction (95% CI) DC vs EC: 0.90 (0.38, 0.98), p=0.01 NNT (95 % CI) 20 (17 to 67)</td>
</tr>
</tbody>
</table>

RCT randomised controlled trial, EC early clamping, DC delayed clamping, RR relative risk, CI confidence interval, NNT number needed to treat

*Iron deficiency defined as ≥ 2 iron indicators (low ferritin, low mean cell volume, low transferrin saturation, high transferrin receptors) outside reference range
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>India</td>
<td>SR</td>
<td>1 RCT (Geethanath) 107 infants</td>
<td>0</td>
<td>Mean (SD) At 3 months: 55.7 (3.7) µg/L</td>
<td>Mean (SD) At 3 months: 73.6 (3.1) µg/L</td>
<td>Mean difference (IV, Fixed, 95% CI): At 3 months: -17.90 (-19.2, -16.59) µg/L</td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Mexico</td>
<td>SR</td>
<td>1 RCT (Chaparro) 476 infants</td>
<td>161 (EC 85 DC 76)</td>
<td>Mean (SD) At 6 months: 34.9 (32.2) µg/L</td>
<td>Mean (SD) At 6 months: 46.7 (37.7) µg/L</td>
<td>Mean difference (IV, Fixed, 95% CI): At 6 months: -11.80 (-19.53, -4.07) µg/L</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>53 (EC 25 DC 28)</td>
<td>At 4 months: 81 (6-760) µg/L Ferritin < 20 µg/L: 13/175 (7.4%)</td>
<td>At 4 months: 117 (20-880) µg/L Ferritin < 20 µg/L: 0/172 (0)</td>
<td>Difference (95% CI) At 4 months (geometric mean ratio in percentage): 45% (23%, 71%), p<0.001 At 4 months: Ferritin < 20 µg/L: DC vs EC: RR reduction (95% CI): 25.7 (-441.8, -0.6)* NNT (95% CI): 14 (8 to 29)*</td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, SD standard deviation, IV inverse variance, CI confidence interval, EC early clamping, DC delayed clamping, RR relative risk, NNT number needed to treat, * recalculated in Stat Calc, wrong figures (1.0 (0.71-1.00), NNT 14 (14-25)) in paper
Table 4. Outcome variable: Immediate (at 2 days) and long-term (at 4 or 6 months) infant anaemia

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n</th>
<th>With withdrawals - dropouts</th>
<th>Intervention Result</th>
<th>Control Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Zambia</td>
<td>SR</td>
<td>At 4 months 1 RCT (van Rheenen) 91 infants</td>
<td>13 (EC 7 DC 6)</td>
<td>At 4 months Hb <10.3 g/dL: 18/45</td>
<td>At 4 months Hb <10.3 g/dL: 10/46</td>
<td>RR (M-H, Fixed, 95% CI): 1.84 (0.96, 3.54)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Zambia, Mexico</td>
<td>SR</td>
<td>At 6 months 2 RCTs 44 7 infants (van Rheenen, Chaparro)</td>
<td>135 (EC 8+ 68 DC 11+ 50)</td>
<td>At 6 months Hb <10.5 g/dL (one RCT) or Hb <12.2 g/dL (one RCT) 47/216</td>
<td>At 6 months Hb <10.5 g/dL (one RCT) or Hb <12.2 g/dL (one RCT) 47/231</td>
<td>RR (M-H, Fixed, 95% CI): 1.05 (0.75, 1.48)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>At 2 days: 78 (EC 40 DC 38)</td>
<td>At 2 days Hb <145 g/L: 10/160 (6.3%)</td>
<td>At 2 days Hb <145 g/L: 2/162 (1.2%)</td>
<td>At 2 days: RR reduction (95 % CI): 0.80 (0.22, 0.95), $p=0.02$, NNT (95% CI): 20 (15-111)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/53 (EC 25 DC 28)</td>
<td>At 4 months Hb < 105 g/L: 21/175 (12%)</td>
<td>At 4 months Hb < 105 g/L: 21/168 (12%)</td>
<td>At 4 months: RR reduction (95 % CI): -0.04 (-0.83, 0.41), $p=1.0$, NNT: NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, SD standard deviation, RR risk ratio, M-H Mantel-Haenszel, IV inverse variance, CI confidence interval, EC early clamping, DC delayed clamping, NNT number needed to treat, NA not applicable
Appendix 1

Table 5. Outcome variable: Immediate (0-48 h) and long-term (2-6 months) infant haemoglobin level

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Canada, Argentina, Mexico</td>
<td>SR</td>
<td>Newborn: 3 RCTs (Saigal, Ceriani-Cernadas, Chaparro) 671 infants</td>
<td></td>
<td></td>
<td>Newborn: Mean difference (IV, Random, 95% CI): -2.17 g/dL (-4.06, -0.28)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Libya, Argentina,</td>
<td>SR</td>
<td>24-48 h: 2 RCTs (Emhamed, Ceriani-Cernadas) 382 infants</td>
<td></td>
<td></td>
<td>24-48 h: Mean difference (IV, Fixed, 95% CI): -1.34 g/dL (-1.80, -0.88)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Zambia, India,</td>
<td>SR</td>
<td>2-4 months: 3 RCTs (van Rheenen, Geethanath, Gupta) 256 infants</td>
<td></td>
<td></td>
<td>2-4 months: Mean difference (IV, Random, 95% CI): -0.30 g/dL (-1.25, 0.65)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Zambia, Mexico</td>
<td>SR</td>
<td>6 months: 2 RCTs (van Rheenen, Chaparro) 447 infants</td>
<td></td>
<td></td>
<td>6 months: Mean difference (IV, Fixed, 95% CI): 0.03 g/dL (-0.17, 0.23)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden, RCT</td>
<td></td>
<td>400 infants (EC 25 DC 32)</td>
<td></td>
<td></td>
<td>Mean difference (95% CI): 13.5 g/L (9.6, 17.5) g/L, p<0.001</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden, RCT</td>
<td></td>
<td>400 infants (EC 25 DC 32)</td>
<td></td>
<td></td>
<td>Mean difference (95% CI): 0.0 g/L (-1.6, 1.6), p=0.98</td>
<td>High</td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, IV inverse variance, CI confidence interval, EC early clamping, DC delayed clamping, SD standard deviation,
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Intervention</th>
<th>Control</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Argentina</td>
<td>SR</td>
<td>272 infants</td>
<td>4 (EC 3 DC 1)</td>
<td>Hct <45% 8/90</td>
<td>Hct <45% 1/182</td>
<td>RR (M-H, Fixed, 95% CI) 16.18 (2.05, 127.37)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Argentina</td>
<td>SR</td>
<td>268 infants</td>
<td>NA</td>
<td>Hct <45% 15/89</td>
<td>Hct <45% 5/179</td>
<td>RR (M-H, Fixed, 95% CI) 5.03 (2.27, 16.07)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td>Jahazi, 2008</td>
<td>Iran</td>
<td>RCT</td>
<td>64</td>
<td>0</td>
<td>2 h, mean (SD) 61 (4.9)</td>
<td>2 h, mean (SD) 61.6 (4.5)</td>
<td>2 h: p=0.618 18 h: p=0.532</td>
<td>Low</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>78 (EC 40 DC 38)</td>
<td>48 h , mean (SD): 50 (5)</td>
<td>48 h , mean (SD): 53 (5)</td>
<td>Mean difference (95% CI): 3.5 (2.4, 4.6), p<0.001</td>
<td>High</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>57 (EC 25 DC 32)</td>
<td>4 months, mean (SD): 33 (2)</td>
<td>4 months, mean (SD): 33 (2)</td>
<td>Mean difference (95% CI): -0.2 (-0.7, 0.2), p=0.28</td>
<td>High</td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, RR risk ratio, M-H Mantel-Haenzsel, CI confidence interval, EC early clamping, DC delayed clamping, NA not available, SD standard deviation
Appendix 1

Table 7. Outcome variable: Infant jaundice requiring phototherapy

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Australia, Canada, UK, Libya, Zambia</td>
<td>SR</td>
<td>5 RCTs (McDonald Nelson, Oxford midwives, Ehmahed, van Rheenen) 1762 infants</td>
<td>NA</td>
<td>28/852</td>
<td>RR (M-H, Fixed, 95% CI) 0.59 (0.38, 0.92)</td>
<td>See Table 1 for risk of bias according to McDonald and Middleton</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400 infants</td>
<td>19 (EC 11 DC 8)</td>
<td>At 2 days: 2/189 (1.1%)</td>
<td>At 2 days: 1/192 (0.5%)</td>
<td>p=0.96</td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, NA not applicable, RR risk ratio, M-H Mantel-Haenszel, CI confidence interval, EC early clamping, DC delayed clamping
Table 8. Outcome variable: Apgar score < 7 at five minutes

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R (M-H, Fixed, 95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.23 (0.73, 2.07)</td>
</tr>
<tr>
<td>Quality (may vary according to outcome)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Australia, USA</td>
<td>SR</td>
<td>2 RCTs (McDonald, Spears) 1342 infants</td>
<td>NA</td>
<td>50/672</td>
<td>24/670</td>
</tr>
<tr>
<td>Andersson, 2011</td>
<td>Sweden</td>
<td>RCT</td>
<td>400</td>
<td>18 (EC 11 DC 7)</td>
<td>8/189 (4.2%)</td>
<td>5/193 (2.6%)</td>
</tr>
</tbody>
</table>

SR systematic review, RCT randomised controlled trial, NA not applicable, RR relative risk, M-H Mantel-Haenszel, CI confidence interval, EC early clamping, DC delayed clamping
Table 9. Outcome variable: Admission to special baby nursery or neonatal intensive care unit

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Australia, Argentina, Canada</td>
<td>SR</td>
<td>1293 infants</td>
<td>19/599</td>
<td>24/694</td>
<td>RR (M-H, Fixed, 95% CI) 1.03 (0.56, 1.90)</td>
</tr>
</tbody>
</table>

SR systematic review, RR risk ratio, NA not applicable, M-H Mantel-Haenszel, CI confidence interval.
Table 10. Outcome variable: Severe postpartum hemorrhage ≥1000 ml

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Australia, Zambia, Argentina, Mexico</td>
<td>SR</td>
<td>4 RCTs, (McDonald, van Rheenen, Ceriani-Cernadas, Chaparro) 1684 women</td>
<td>NA</td>
<td>20/786</td>
<td>28/898</td>
</tr>
</tbody>
</table>

SR systematic review, RR risk ratio, NA not applicable, M-H Mantel-Haenszel, CI confidence interval
Table 11. Outcome variable: Need for manual removal of retained placenta

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald and Middleton, 2008</td>
<td>Australia UK</td>
<td>SR</td>
<td>2 RCTs McDonald, Oxford midwives 1515 women</td>
<td>NA</td>
<td>18/736</td>
<td>12/779</td>
<td>RR (M-H, Fixed, 95% CI) 1.59 (0.78, 3.26)</td>
</tr>
</tbody>
</table>

SR systematic review, RR risk ratio, NA not applicable, M-H Mantel-Haenszel, CI confidence interval
Table 12: Outcome variable: Correct sampling of arterial and venous blood from the umbilical cord for blood gas and acid-base analysis

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Early clamping</td>
<td>Control Delayed clamping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention</td>
<td></td>
<td>Quality (may vary according to outcome)</td>
</tr>
<tr>
<td>De Paco, 2011</td>
<td>Spain</td>
<td>RCT</td>
<td>158</td>
<td>22 (EC 10 DC 12)</td>
<td>55*/69 (79.7%)</td>
<td>44*/67 (65.7%)</td>
</tr>
</tbody>
</table>

RCT randomised controlled trial, **EC** early clamping, **DC** delayed clamping

** if "correct" sampled (i.e. both artery and vein) pH should be ≤0.03 and pCO2 ≥ 1.0 kPa in the umbilical artery as compared with the umbilical vein
<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad et al., 1982</td>
<td>Cohort study with no unique outcome</td>
</tr>
<tr>
<td>Alexiou et al., 1982</td>
<td>Not correct outcome</td>
</tr>
<tr>
<td>Begley et al., 2010</td>
<td>Not correct intervention</td>
</tr>
<tr>
<td>Begley, 1990</td>
<td>Not correct intervention</td>
</tr>
<tr>
<td>Bertolini et al., 1995</td>
<td>Cohort study. Not correct patients and intervention</td>
</tr>
<tr>
<td>Capasso et al., 2003</td>
<td>Cohort study. Not correct PICO</td>
</tr>
<tr>
<td>Chaparro et al., 2007</td>
<td>Not correct outcome</td>
</tr>
<tr>
<td>Colozzi, 1954</td>
<td>Cohort study with no unique outcome</td>
</tr>
<tr>
<td>Daily et al., 1970</td>
<td>Quasirandomised study</td>
</tr>
<tr>
<td>Donaldson et al., 1999</td>
<td>Not correct outcome</td>
</tr>
<tr>
<td>Grajeda et al., 1997</td>
<td>Not correct PICO</td>
</tr>
<tr>
<td>Hudson, 1967</td>
<td>Cohort study with no unique outcome</td>
</tr>
<tr>
<td>Hutton et al., 2007</td>
<td>Both RCTs and not RCTs included</td>
</tr>
<tr>
<td>Jaleel et al., 2009</td>
<td>Wrong outcome (cord Hb and bilirubin)</td>
</tr>
<tr>
<td>Kagiya et al., 1989</td>
<td>Not correct outcome</td>
</tr>
</tbody>
</table>
Appendix 2

<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kliot et al., 1984</td>
<td>Quasirandomised study</td>
</tr>
<tr>
<td>Lanzkowsky, 1960</td>
<td>Quasirandomised study</td>
</tr>
<tr>
<td>Pafumi et al., 2000</td>
<td>Not correct PICO</td>
</tr>
<tr>
<td>Pafumi et al., 2001</td>
<td>Not correct PICO</td>
</tr>
<tr>
<td>Pafumi et al., 2002</td>
<td>Commented in report, belong to “others”</td>
</tr>
<tr>
<td>Pascale et al., 2008</td>
<td>Not correct comparison</td>
</tr>
<tr>
<td>Philip1973</td>
<td>Not correct outcome</td>
</tr>
<tr>
<td>Prendiville et al., 1988</td>
<td>Not correct intervention</td>
</tr>
<tr>
<td>Rogers et al., 1998</td>
<td>Not correct intervention (preterm)</td>
</tr>
<tr>
<td>Shirvani et al., 2010</td>
<td>Not correct comparison</td>
</tr>
<tr>
<td>Walsh, 1968</td>
<td>Cohort study</td>
</tr>
<tr>
<td>van Rheenen et al., 2006</td>
<td>Not correct study design</td>
</tr>
<tr>
<td>Wu et al., 1960</td>
<td>Quasirandomised</td>
</tr>
<tr>
<td>Yao et al., 1969</td>
<td>Not correct outcome</td>
</tr>
</tbody>
</table>
Appendix 3: Search strategy, study selection and references

Question at issue:
Is early umbilical cord clamping not different from or better than late umbilical cord clamping regarding postpartum infant iron deficiency and iron deficiency anaemia variables, long-term cognitive function, loss of stem cells, maternal postpartum haemorrhage, manual removal of retained placenta and correct sampling for blood gas analysis?

PICO (Patient, Intervention, Comparison, Outcome)

P= Newborn infants and mothers with full-term pregnancy (≥ 37)
I= Early umbilical cord clamping (< 1min)
C= Delayed or late umbilical cord clamping (≥ 1 min)

O¹ (Infant) =
Primary outcomes:
Iron-deficiency, late*
Ferritin level, late
Anaemia, early* and late
Haemoglobin level, early and late
Haematocrit, early and late
Cognitive function
Loss of stem cells
(*Early defined as within 0-48 h and late as after 2-6 months)

Secondary outcomes:
Need for phototherapy
Apgar score <7 at five min
Admission to neonatal intensive care units (NICU)

O² (Mother) =
Severe postpartum haemorrhage ≥1000ml
Manual removal of retained placenta

O³ (Methodological) =
Correct sampling of arterial and venous blood from the cord for blood gas analysis

Eligibility criteria:
Study design:
Randomized controlled trials – for O¹ and O² (Infant and Maternal outcomes)
Cohort studies with ≥100 patients – for O³ (Methodological outcomes)
Systematic reviews

Language: Swedish, Norwegian, Danish, English, German
Selection process – flow diagram

1. **Identification**
 - Records identified through database searching (n = 1772)
 - Additional records identified through other sources (n = 73)
 - Records after duplicates removed (n = 1205)

2. **Screening**
 - Records screened by library (n = 1205)
 - Records excluded by library. Did not fulfil PICO or other eligibility criteria (n = 1077)
 - Full-text articles excluded by library, with reasons (n = 85)
 - 65 = wrong study design
 - 2 = wrong patient
 - 6 = wrong intervention
 - 1 = wrong comparison
 - 10 = wrong subject/angle
 - 1 = Other

3. **Eligibility**
 - Full-text articles assessed for eligibility by library (n = 128)
 - Full-text articles assessed for eligibility by project group (n = 43)
 - Full-text articles excluded by project group, with reasons (n = 39)
 - 10 of these excluded articles are appraised in the included systematic review (see Appendix 1) and not reappraised.
 - However, data from these studies are included in a meta-analysis in this report

4. **Included**
 - Full-text articles included in synthesis (n = 4)
 - (including 1 systematic review)
 - See Appendix 1
Search strategy

Database: PubMed
Date: 2011-11-22
No of results: 711

<table>
<thead>
<tr>
<th>Search</th>
<th>Most Recent Queries</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>#9</td>
<td>Search #6 NOT #7 Limits: English, German, Danish, Norwegian, Swedish</td>
<td>711</td>
</tr>
<tr>
<td>#8</td>
<td>Search #6 NOT #7</td>
<td>772</td>
</tr>
<tr>
<td>#7</td>
<td>Search (Editorial[ptyp] OR Letter[ptyp] OR Comment[ptyp] OR case reports[ptyp])</td>
<td>2520158</td>
</tr>
<tr>
<td>#6</td>
<td>Search #1 AND #2 AND #3</td>
<td>855</td>
</tr>
<tr>
<td>#5</td>
<td>Search #1 AND #3</td>
<td>8300</td>
</tr>
<tr>
<td>#4</td>
<td>Search #1 AND #2</td>
<td>1976</td>
</tr>
<tr>
<td>#3</td>
<td>Search immediate OR prompt OR early OR late OR delay OR delayed OR time OR timing</td>
<td>3617368</td>
</tr>
<tr>
<td>#2</td>
<td>Search clamping OR clamp OR cutting OR cut OR detachment OR separation OR (active management)</td>
<td>426301</td>
</tr>
<tr>
<td>#1</td>
<td>Search umbilical cord</td>
<td>32140</td>
</tr>
</tbody>
</table>

Database: EMBASE (OVID SP)
Date: 2011-11-22
No of results: 489

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exp umbilical cord/</td>
<td>38808</td>
</tr>
<tr>
<td>2</td>
<td>umbilical cord.ti,ab,kw.</td>
<td>14766</td>
</tr>
<tr>
<td>3</td>
<td>1 or 2</td>
<td>43755</td>
</tr>
<tr>
<td>4</td>
<td>(clamping or clamp or cutting or cut or detachment or separation).ti,ab,kw.</td>
<td>339060</td>
</tr>
<tr>
<td>5</td>
<td>"active management".ti,ab,kw.</td>
<td>1029</td>
</tr>
<tr>
<td>6</td>
<td>4 or 5</td>
<td>340052</td>
</tr>
<tr>
<td>7</td>
<td>exp clamp/</td>
<td>5860</td>
</tr>
<tr>
<td>8</td>
<td>6 or 7</td>
<td>341687</td>
</tr>
<tr>
<td>9</td>
<td>(immediate or prompt or early or late or delay or delayed or time or timing).ti,ab,kw.</td>
<td>3168390</td>
</tr>
<tr>
<td>10</td>
<td>3 and 8 and 9</td>
<td>676</td>
</tr>
<tr>
<td>11</td>
<td>limit 10 to (embase and (danish or english or german or norwegian or swedish))</td>
<td>489</td>
</tr>
</tbody>
</table>
Database: PsycINFO (OVID SP)
Date: 2011-11-22
No of results: 45

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>umbilical cord.af.</td>
<td>804</td>
</tr>
<tr>
<td>2</td>
<td>(clamping or clamp or cutting or cut or detachment or separation).af.</td>
<td>78464</td>
</tr>
<tr>
<td>3</td>
<td>"active management".af.</td>
<td>204</td>
</tr>
<tr>
<td>4</td>
<td>2 or 3</td>
<td>78662</td>
</tr>
<tr>
<td>5</td>
<td>(immediate or prompt or early or late or delay or delayed or time or timing).af.</td>
<td>910809</td>
</tr>
<tr>
<td>6</td>
<td>1 and 4 and 5</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>limit 6 to (danish or english or german or norwegian or swedish)</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>limit 7 to all journals</td>
<td>45</td>
</tr>
</tbody>
</table>

Database: Mosby Nursing Index
Date: 2011-11-22
No of results: 245

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>'umbilical cord'/exp</td>
<td>9112</td>
</tr>
<tr>
<td>#2</td>
<td>('umbilical'/exp OR 'umbilical') AND cord</td>
<td>7220</td>
</tr>
<tr>
<td>#3</td>
<td>#1 OR #2</td>
<td>10432</td>
</tr>
<tr>
<td>#4</td>
<td>clamping OR clamp OR cutting OR cut OR detachment OR separation OR 'active management'</td>
<td>56933</td>
</tr>
<tr>
<td>#5</td>
<td>immediate OR prompt OR early OR late OR delay OR delayed OR time OR timing</td>
<td>864464</td>
</tr>
<tr>
<td>#6</td>
<td>#3 AND #4 AND #5</td>
<td>279</td>
</tr>
<tr>
<td>#7</td>
<td>#6 AND [(danish]/lim OR [english]/lim OR [german]/lim OR [norwegian]/lim OR [swedish]/lim)</td>
<td>245</td>
</tr>
</tbody>
</table>

Database: The Cochrane Library (Wiley)
Date: 2011-11-22
No of results: 150
Cochrane reviews: 8
Other reviews: 5
Clinical trials: 137
Technology Assessments: 0
Economic evaluations: 0

<table>
<thead>
<tr>
<th>Line</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>umbilical cord:ti,ab,kw</td>
<td>682</td>
</tr>
<tr>
<td>#2</td>
<td>MeSH descriptor Umbilical Cord</td>
<td>148</td>
</tr>
<tr>
<td>#3</td>
<td>#1 OR #2</td>
<td>682</td>
</tr>
<tr>
<td>#4</td>
<td>immediate OR prompt OR early OR late OR delay OR delayed OR time OR timing:ti,ab,kw</td>
<td>206680</td>
</tr>
<tr>
<td>#5</td>
<td>clamping OR clamp OR cutting OR cut OR detachment OR separation OR "active management":ti,ab,kw</td>
<td>7358</td>
</tr>
<tr>
<td>#6</td>
<td>#3 AND #4 AND #5</td>
<td>150</td>
</tr>
</tbody>
</table>
Database: CRD – Centre for Reviews and Dissemination

Date: 2011-11-22

No of results: 31

DARE 23

NHS EED 4

HTA 4

Comment: A update of the search in 2012-03-23 with umbilical cord in all fields did not retrieve any relevant references

<table>
<thead>
<tr>
<th>Line</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(umbilical cord):TI IN DARE, NHSEED, HTA</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>MeSH DESCRIPTOR Umbilical Cord EXPLODE ALL TREES</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>#1 OR #2</td>
<td>31</td>
</tr>
</tbody>
</table>

Search updated: 2012-03-23, 37 new results (nothing relevant)

DARE 55

NHS EED 6

HTA 7

<table>
<thead>
<tr>
<th>Line</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>umbilical cord</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>MeSH DESCRIPTOR Umbilical Cord EXPLODE ALL TREES</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>#1 OR #2</td>
<td>68</td>
</tr>
</tbody>
</table>

Other HTA-databases 2011-11-23

Searches have also been made in NHS Evidence, CADTH(Canadian Agency for Drugs and Technologies in Health) and TRIP(Turning Research into Pratice as well as in the national HTA-databases in the Scandinavian countries; The Swedish Council on Health technology Assessment (SBU), Norwegian Knowledge Centre for the Health Services (NOKC), Danish Centre for Health technology Assessment (DACEHTA)

Nothing new was identified.

Reference lists:

A comprehensive review of reference lists brought 73 new references
References

Included articles:

Included systematic review:

Excluded articles:

Alexiou D, Benos D, Kaklamanis E, Papdatos K. [IgG plasma levels in early and late cord clamping (author's transl)]. Monatsschr Kinderheilkd. 1982 Feb; 130(2):98.

McDonald S. Timing of interventions in the third stage of labour. [Abstract] International Confederation of Midwives 24th Triennial Congress; 1996 May 26-31; Oslo, Norway. 1996:143 (included in McDonald 2008)

Other:
AMSTAR [checklist for systematic reviews] [Internet]. [cited 2012 Jan 03]

Mikkola HKA, Orkin SH. The journey of developing hematopoietic stem cells. Development 2006; 133: 3733-44.

Wiberg N, Källén K, Olofsson P. Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG. 2008 May; 115(6): 697-703

Summary of Findings: Projekt Timing of umbilical cord clamping for neonatal and maternal outcomes

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Number of studies</th>
<th>Study limitations</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Publication bias</th>
<th>Magnitude of effect</th>
<th>Relative effect (95% CI)</th>
<th>Absolute effect</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant iron deficiency (late)</td>
<td>1 RCT</td>
<td>No serious limitations</td>
<td>Not relevant</td>
<td>Serious indirectness (-1)</td>
<td>Imprecision (-1)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>RR reduction (95% CI) 0.90 (0.38, 0.98)</td>
<td>NNT (95% CI) 20 (17, 67)</td>
<td>⊕⊕⊕cc Low</td>
</tr>
<tr>
<td>Infant serum ferritin (late)</td>
<td>1 SR (2 RCT) 1 RCT</td>
<td>Serious limitations (-1)</td>
<td>No serious inconsistency</td>
<td>Some uncertainty (0?)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td>⊕⊕⊕c Moderate</td>
</tr>
<tr>
<td>Infant anemia, early</td>
<td>1 RCT</td>
<td>Serious limitations (-1)</td>
<td>Not relevant</td>
<td>No uncertainty</td>
<td>Imprecision (-1)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>RR reduction 0.80 (95% CI 0.22, 0.95)</td>
<td>NNT (95% CI) 1.04 (0.71, 1.53)</td>
<td>⊕⊕⊕c Low</td>
</tr>
<tr>
<td>Infant anemia (late)</td>
<td>1 SR (2 RCT) 1 RCT</td>
<td>Some limitations (0?)</td>
<td>No serious inconsistency</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>OR (95% CI) 1.04 (0.71, 1.53)</td>
<td></td>
<td>⊕⊕⊕c Moderate</td>
</tr>
<tr>
<td>Infant haemoglobin (early)</td>
<td>1 SR (4 RCT) 1 RCT</td>
<td>Some limitations (0?)</td>
<td>No serious inconsistency</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>Mean difference (95% CI) -17.86 (-27.55, -8.17)</td>
<td></td>
<td>⊕⊕⊕c Moderate</td>
</tr>
<tr>
<td>Infant haemoglobin (late)</td>
<td>1 SR (4 RCT) 1 RCT</td>
<td>Some limitations (0?)</td>
<td>Some inconsistency (0?)</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>Mean difference (95% CI) -0.82 (-4.72, 3.08)</td>
<td></td>
<td>⊕⊕⊕c Moderate</td>
</tr>
</tbody>
</table>
Summary of Findings: Projekt Timing of umbilical cord clamping for neonatal and maternal outcomes

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Number of studies Design (No of studies included in SR)</th>
<th>Study limitations</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Publication bias</th>
<th>Magnitude of effect</th>
<th>Relative effect (95%CI)</th>
<th>Absolute effect</th>
<th>Quality of evidence GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant hematocrit (24-48 hs)</td>
<td>1 SR (1 RCT)</td>
<td>Serious limitations (-1)</td>
<td>No serious inconsistency</td>
<td>No uncertainty</td>
<td>Uncertain (0?)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>SR: RR (95% CI) (Hct < 45% 6.03 (2.27, 16.07) RCT: Mean difference (95% CI) 3.5 (2.4, 4.6)</td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Infant hematocrit (late)</td>
<td>1 RCT</td>
<td>Some limitations (0?)</td>
<td>Not relevant</td>
<td>No uncertainty</td>
<td>Uncertain (0?)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>Mean difference (95% CI) -0.2 (-0.7, 0.2)</td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Infant jaundice requiring phototherapy</td>
<td>1 SR (4 RCT)</td>
<td>Some limitations (0?)</td>
<td>Some inconsistency (0?)</td>
<td>Some uncertainty (0?)</td>
<td>Serious imprecision (-1)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>OR (95% CI) 2.14 (0.68, 6.77)</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Apgar score <7 at 5 mins</td>
<td>1 SR (1 RCT)</td>
<td>Serious limitations (-1)</td>
<td>No serious inconsistency</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>OR (95% CI) 1.13 (0.62, 2.05)</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Outcome variable</td>
<td>Number of studies Design (No of studies included in SR)</td>
<td>Study limitations</td>
<td>Consistency</td>
<td>Directness</td>
<td>Precision</td>
<td>Publication bias</td>
<td>Magnitude of effect</td>
<td>Relative effect (95%CI)</td>
<td>Absolute effect</td>
<td>Quality of evidence GRADE</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Admission to neonatal ICU</td>
<td>1 SR (3 RCT)</td>
<td>Very serious limitations (-2)</td>
<td>No serious inconsistency (0?)</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>RR (95% CI) 1.03 (0.56, 1.90)</td>
<td></td>
<td>⊕⊕⊕⊕ Very low</td>
</tr>
<tr>
<td>Severe postpartum hemorrhage ≥ 1000 ml</td>
<td>1 SR (4 RCT)</td>
<td>Serious limitations (-1)</td>
<td>No serious inconsistency</td>
<td>Serious indirectness (-1)</td>
<td>No imprecision</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>RR (95% CI) 0.84 (0.48, 1.49)</td>
<td></td>
<td>⊕⊕‖ Low</td>
</tr>
<tr>
<td>Manual removal of placenta</td>
<td>1 SR (2 RCT)</td>
<td>Serious limitations (-1)</td>
<td>Some inconsistency (0?)</td>
<td>Serious indirectness (-1)</td>
<td>Uncertain (0?)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>RR (95% CI) 1.59 (0.78, 3.26)</td>
<td></td>
<td>⊕⊕⊕⊕ Very low</td>
</tr>
<tr>
<td>Correct sampling from cord</td>
<td>1 RCT</td>
<td>Very serious limitations (-2)</td>
<td>Not relevant</td>
<td>Serious indirectness (-1)</td>
<td>Uncertain (0?)</td>
<td>Unlikely</td>
<td>Not applicable</td>
<td>% Correct sampling 79.7% vs 65.7% p=0.10</td>
<td></td>
<td>⊕⊕⊕⊕ Very low</td>
</tr>
</tbody>
</table>
Health technology assessment (HTA) is the systematic evaluation of properties, effects, and/or impacts of health care technologies, i.e. interventions that may be used to promote health, to prevent, diagnose or treat disease or for rehabilitation or long-term care. It may address the direct, intended consequences of technologies as well as their indirect, unintended consequences. Its main purpose is to inform technology-related policymaking in health care.

To evaluate the quality of evidence the Centre of Health Technology Assessment in Region Västra Götaland is currently using the GRADE system, which has been developed by a widely representative group of international guideline developers. According to GRADE the level of evidence is graded in four categories:

- High quality of evidence = (GRADE ⭐⭐⭐⭐)
- Moderate quality of evidence = (GRADE ⭐⭐⭐)
- Low quality of evidence = (GRADE ⭐⭐OO)
- Very low quality of evidence = (GRADE ⭐OOO)

In GRADE there is also a system to rate the strength of recommendation of a technology as either “strong” or “weak”. This is presently not used by the Centre of Health Technology Assessment in Region Västra Götaland. However, the assessments still offer some guidance to decision makers in the health care system. If the level of evidence of a positive effect of a technology is of high or moderate quality it most probably qualifies to be used in routine medical care. If the level of evidence is of low quality the use of the technology may be motivated provided there is an acceptable balance between benefits and risks, cost-effectiveness and ethical considerations. Promising technologies, but a very low quality of evidence, motivate further research but should not be used in everyday routine clinical work.

Christina Bergh, Professor, MD.
Head of HTA-centrum
From operations or activity/management:

Question

Clinic-based HTA

Main process

Support process

• Training
• Search, sort, and select process
• Advice, help, assistance
• Feedback

Quality assurance process

External review

Formally designated group for quality assurance

Summarized assessment

Quality assured decision rationale