Drug eluting balloons and stents for symptomatic peripheral arterial disease

Drug eluting balloons and stents for symptomatic peripheral arterial disease
[Läkemedelsavgivande ballonger och stentar vid behandling av symtomgivande benartärsjukdom]

Falkenberg M¹*, Carlson P¹, Nordanstig J², Pettersson J³, Smidfelt K², Svanberg T⁴, Sjögren P⁴, Sjövall H⁴

¹ Department of Radiology, uro-gastro-kärl-radiologi, Sahlgrenska University Hospital, Göteborg, Sweden
² Department of Vascular Surgery, Sahlgrenska University Hospital, Göteborg, Sweden
³ Medical Library, Sahlgrenska University Hospital, Göteborg, Sweden
⁴ HTA-centrum, Region Västra Götaland, Sweden

* Corresponding author

Published June 2015
2015:81
1. Abbreviations

Amp = Amputation
CT = Computed Tomography
BMS = Bare metal stent
DEB = Drug-eluting balloon
DES = Drug-eluting stent
LLL = Late lumen loss
Mort = Mortality
MRI = Magnetic resonance imaging
P1 = Patients with intermittent claudication
P2 = Patients with critical ischemia
P3 = Patients belonging to either P1 or P2 (not separated)
PAD = Peripheral artery disease
PP = Primary patency (most common definition: patent reconstruction [i.e. not thrombosed] without any reintervention. In some included studies, differently defined as: freedom from ≥ 50% restenosis)
PTA = Percutaneous transluminal angioplasty
QoL = Quality of life
RCT = Randomized controlled trial
Rest = Restenosis (measured as: binary patency late lumen loss, primary patency, target lesion revascularization)
Ruth = Rutherford symptom score
UCB = Uncoated balloon
TLR = Target lesion revascularisation (most common definition: reintervention for ≥50% restenosis within ±5 mm proximal and/or distal to the target lesion in patients with recurrent symptoms)
TVR = Target vessel revascularisation
Wd = Walking distance
2. Summary of the Health Technology Assessment

Abstract

Background: Endovascular treatment of atherosclerotic disease of the extremities is increasingly used as an alternative to open surgery, with an expectation of benefits in form of shorter convalescence and less invasive surgery. However, there is a risk of restenosis mainly due to intimal hyperplasia after balloon dilatation related intimal injury. Special dilatation balloons and endovascular stents containing anti-proliferative agents have been designed in an attempt to reduce this risk. The results with these devices are however poorly documented.

Objective: The aim of the current HTA was to compare the effectiveness and risks of endovascular stents and balloons with or without anti-proliferative agents, in the treatment of atherosclerotic disease of the lower extremities.

Search methods and study selection: Systematic literature searches were conducted in PubMed, Embase, the Cochrane Library and a number of HTA-databases. Systematic reviews, controlled studies and case-series (on adverse events) were considered for inclusion.

Literature: We identified 17 randomized controlled studies (RCT), four cohort studies and 13 case series. Eight RCTs and four cohort studies compared drug eluting stents (DES) with bare metal stents (BMS), and nine RCTs compared drug eluting balloons (DEB) with uncoated balloons (UCB). There was a great heterogeneity in terms of included patient groups (intermittent claudication and/or critical ischemia, above- or below the knee, or mixed), substance used (everolimus, paclitaxel or sirolimus), device tested (stent or balloon), and studied outcomes (Table 1). Most studies were available for sirolimus containing stents in below-the knee location in patients with critical ischemia (3 RCTs and 3 cohorts), and for balloon intervention in the mixed patient population, using the agent paclitaxel (7 RCTs).

Conclusions: Despite almost 3,000 studied patients, no positive effects on patient-related outcomes have consistently been observed with drug eluting stents or balloons in the treatment of atherosclerotic disease of the lower extremities, compared with uncoated stents or balloons. Mortality rate within 12 months was reported to be between zero and 18 %, probably mainly related to the underlying general atherosclerotic disease. Commonly encountered SAEs are mortality, amputations, pseudo aneurysms and thrombosis.

For patients with intermittent claudication (P1) due to below the knee lesions, it is uncertain whether there is little or no difference regarding mortality, restenosis or symptom severity with DES (sirolimus) compared with BMS. Very low certainty of evidence (GRADE Σ). In patients with critical ischemia (P2) and lesions below the knee, DES (everolimus) may reduce restenosis compared with BMS. In the same patient group, DEB with paclitaxel compared with UCB may slightly reduce symptom severity (Rutherford score). Low certainty of evidence (GRADE Σ). Importantly, for patients with critical ischemia below the knee, in one RCT comparing DEB (paclitaxel) with UCB, a significant increase in amputation rate (not reported in the RCT) was detected in the DEB group when all amputated patients from the study flowchart were included in the analysis. There was also a non-significant but numerically higher mortality in the DEB (paclitaxel) group compared with the UCB group.

In a mixed population (P3) (i.e. intermittent claudication or critical ischemia patients) with lesions above the knee, DES (paclitaxel) compared with BMS may reduce restenosis. DES (sirolimus) compared with BMS in lesions below the knee, may reduce restenosis and may slightly reduce symptom severity. In the mixed population, with lesions above and/or below the knee, restenosis may be reduced with DEB (paclitaxel) compared with UCB. In all cases low certainty of evidence (GRADE Σ). In the studied patient populations (P1-P3), the effect estimates for all other studied outcomes were uncertain, non-significant or inconclusive.

Very low-, or low certainty of evidence (GRADE Σ or Σ).
3. Svensk sammanfattning

Svensk sammanfattning

Syfte: Att jämföra effektivitet och risker med endovaskulära stentar och ballonger med respektive utan proliferationshämmande läkemedel, för behandling av symtomgivande perifer kärlsjukdom i benen.

Litteratursökning och studieurval: Systematisk litteratursökning gjordes i PubMed, Embase, Cochrane Library och ett antal olika HTA-databaser, i syfte att identifiera relevanta systematiska översikter, kontrollerade studier och fallserier (avseende bifurkationer).

Litteratur: Litteratursökningen identifierade 17 randomiserade kontrollerade studier (RCT), fyra kohortstudier och 13 fallserier. Det förelåg en stor heterogenitet avseende studerade patientgrupper (claudicatio intermittens och/eller kritisk ischemi, lesioner över- eller under knäet, eller blandade populationer), läkemedel (everolimus, paclitaxel eller sirolimus), produkt (stent eller ballong), samt studerade utfall (Table 1). Det största antalet studier avsåg sirolimusavgivande stentar vid lesioner under knäet hos patienter med kritisk ischemi (3 RCTs och 3 kohortstudier), samt paclitaxelavgivande ballonger i en blandpopulation (claudicatio intermittens eller kritisk ischemi) (7 RCT).

Sammanfattande slutsatser: Trots att nästan 3 000 patienter studerats saknas genomgående stöd för fördelaktiga resultat avseende patientnära utfallsmått, vad gäller effekten av läkemedelsavgivande stentar eller ballonger för behandling av symtomgivande perifer kärlsjukdom i benen, jämfört med icke-läkemedelsavgivande stentar eller ballonger. Mortalitet inom ett år rapporteras förekomma efter 0-18 % av ingreppen, sannolikt främst relaterat till bakomliggande generell ateroskleros. Vanligt förekommande allvarliga biverkningar är mortalitet, amputationer, pseudoaneurysm och tromboser.

HTA-report Drug eluting balloons and stents in peripheral arterial disease.
The above summaries were written by HTA-centrum and approved by the Regional board for quality assurance of activity-based HTA. The Regional Health Technology Assessment Centre (HTA-centrum) Region Västra Götaland, Sweden has the task to make statements on HTA reports carried out in VGR. The English summary is a concise summary of similar outline as the summaries in the Cochrane systematic reviews. The Swedish summary addresses the question at issue, results and quality of evidence regarding efficacy and risks, and economical and ethical aspects of the particular health technology that has been assessed in the report, and is ended with a final statement/concluding remark from HTA-centrum.

Christina Bergh, Professor, MD
Head of HTA-centrum of Region Västra Götaland, Sweden, 2015-04-29

<table>
<thead>
<tr>
<th>Christina Bergh</th>
<th>Anders Larsson</th>
<th>Henrik Sjövall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD, Professor</td>
<td>MD, PhD</td>
<td>MD, Professor</td>
</tr>
<tr>
<td>Elisabeth Hansson-Olofsson</td>
<td>Olle Nelzén</td>
<td>Petteri Sjögren</td>
</tr>
<tr>
<td>PhD, Senior lecturer</td>
<td>MD, Associate professor</td>
<td>DDS, PhD</td>
</tr>
<tr>
<td>Magnus Hakeberg</td>
<td>Christian Rylander</td>
<td>Maria Skogby</td>
</tr>
<tr>
<td>OD, Professor</td>
<td>MD, PhD</td>
<td>RN, PhD</td>
</tr>
<tr>
<td>Lennart Jivegård</td>
<td>Ola Samuelsson</td>
<td>Annika Strandell</td>
</tr>
<tr>
<td>MD, Senior university lecturer</td>
<td>MD, Associate professor</td>
<td>MD, Associate professor</td>
</tr>
<tr>
<td>Jenny Kindblom</td>
<td>Ninni Sernert</td>
<td>Therese Svanberg</td>
</tr>
<tr>
<td>MD, Associate professor</td>
<td>Associate professor</td>
<td>HTA-librarian</td>
</tr>
</tbody>
</table>
4. Summary of Findings (SoF-table)

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Design and number of studies</th>
<th>Relative effect</th>
<th>Absolute effect</th>
<th>Quality of evidence GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>RCT 1</td>
<td>I=12.5%</td>
<td>I=5/40</td>
<td>⊗⊗⊗⊗ ⊗⊗⊗⊗ Very low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=6.5%</td>
<td>C=3/46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCT 1</td>
<td>PP: I=85.3%</td>
<td>Not calculated</td>
<td>⊗⊗⊗⊗ Very low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=55.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCT 1</td>
<td>TLR: I=5.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restenosis</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td></td>
<td>⊗⊗⊗⊗ Very low</td>
</tr>
<tr>
<td>Rutherford score (symptom severity)</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>median ΔRuth: I=-1.5 (-3 to -1) C=-1 (-2 to 0) p=0.01</td>
<td>⊗⊗⊗⊗ Very low</td>
</tr>
</tbody>
</table>

PICO 2: Critical ischemia Drug eluting stent (everolimus) vs bare metal stent – below the knee

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Design and number of studies</th>
<th>Relative effect</th>
<th>Absolute effect</th>
<th>Quality of evidence GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>RCT 1 Cohort 1</td>
<td>I=18.1%</td>
<td>I=19/74</td>
<td>⊗⊗⊗⊗ Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=15.8%</td>
<td>C=15/66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Amputation</td>
<td>RCT 1 Cohort 1</td>
<td>I=1.4%</td>
<td>I= 1/74</td>
<td>⊗⊗⊗⊗ Very low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=3.0%</td>
<td>C= 2/66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Restenosis</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>LLL: I= 21%</td>
<td>⊗⊗⊗⊗ Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C=47%</td>
<td>PP: I=85%, C=54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TLR: I=9%, C=34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(p=0.001 for all)</td>
<td></td>
</tr>
<tr>
<td>Rutherford score</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>ΔRuth >2: I=60%,</td>
<td>⊗⊗⊗⊗ Low</td>
</tr>
<tr>
<td>(symptom severity)</td>
<td></td>
<td></td>
<td>C=56%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n.s.)</td>
<td></td>
</tr>
<tr>
<td>Outcome variable</td>
<td>Design and number of studies</td>
<td>Relative effect</td>
<td>Absolute effect</td>
<td>Quality of evidence GRADE</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PICO 2: Critical ischemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug eluting stent (sirolimus) vs bare metal stent – below the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>RCT 1 Cohort 2</td>
<td>Inconsistent data</td>
<td>Inconsistent data</td>
<td>☑️☑️☑️ Very low</td>
</tr>
<tr>
<td>Amputation</td>
<td>RCT 1 Cohort 2</td>
<td>Inconsistent data</td>
<td>Inconsistent data</td>
<td>☑️☑️☑️ Very low</td>
</tr>
<tr>
<td>Restenosis †</td>
<td>RCT 1 Cohort 2</td>
<td>Inconsistent data</td>
<td>Inconsistent data</td>
<td>☑️☑️☑️ Very low</td>
</tr>
<tr>
<td>Rutherford score (symptom severity)</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>ΔRuth: DES -3, BMS -2 n.s</td>
<td>☑️☑️☑️ Very low</td>
</tr>
<tr>
<td>PICO 2: Critical ischemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug eluting balloon (paclitaxel) vs uncoated balloon – below the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Mortality | RCT 2 | Not calculated | Study 1:
I = 7.7%, C = 4.4%, n.s.
Study 2:
I = 9.6%, C = 7.6%, n.s. | ☑️☑️☑️ Low |
| Amputation | RCT 2 | Not calculated | Study 1:
I = 0/239 (0.0%)
C = 1/119 (0.8%), n.s.
Study 2:
I = 20/227 (8.8%)
C = 4/111 (3.6%), p = 0.08 | ☑️☑️☑️ Very low |
| Restenosis † | RCT 2 | Not calculated | Study 1:
BR: I = 27%, C = 74%
TLR: I = 10%, C = 20%
 p = 0.02 or less
Study 2:
BR: I = 41%, C = 36%
TLR: I = 11.9%,
C = 13.5%
n.s. | ☑️☑️☑️ Very low |
| Rutherford score (symptom severity) | RCT 1 | Not calculated | ΔRuth: DCB 4.3, UCB 3.1
p = 0.004 | ☑️☑️☑️ Low |

* Drug eluting balloon 18% vs. uncoated balloon 15% (n.s.) mortality according to trial flowchart.
† Drug eluting balloon 15% vs. uncoated balloon 7% (p = 0.0181) amputations according to trial flowchart.
<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Design and number of studies</th>
<th>Relative effect</th>
<th>Absolute effect</th>
<th>Quality of evidence GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome variable</td>
<td>Design and number of studies</td>
<td>Relative effect</td>
<td>Absolute effect</td>
<td>Quality of evidence GRADE</td>
</tr>
<tr>
<td>PICO 3: Mixed population (critical ischemia and intermittent claudication) Drug eluting stent (paclitaxel) vs bare metal stent – above the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>I=9/241 (3.7%) C=4/238 (1.7%) n.s.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Amputation</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>I=1/241 (0.5%) C=0/238 (0.0%) n.s.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Restenosis</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>PP: I=83%, C=33% TLR: I=10%, C=18% p=0.01 or less.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Rutherford score (symptom severity)</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>ΔRuth data not shown n.s.</td>
<td>⊕⊕⊕⊕ Very low</td>
</tr>
<tr>
<td>PICO 3: Mixed population (critical ischemia and intermittent claudication) Drug eluting stent (sirolimus) vs bare metal stent – below the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>I=14/84 (17%) C=11/79 (14%) n.s.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Amputation</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>I=2/82 (3.2%) C=4/79 (6.4%) n.s.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Restenosis</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>PP: I=81% C=56%, p=0.04 TLR: I=10%, C=18%, n.s.</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Rutherford score (symptom severity)</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>ΔRuth from baseline: I=-2 (-3 to -1) C=-1 (-2 to 9) p=0.004</td>
<td>⊕⊕⊕⊕ Low</td>
</tr>
<tr>
<td>Outcome variable</td>
<td>Design and number of studies</td>
<td>Relative effect</td>
<td>Absolute effect</td>
<td>Quality of evidence GRADE</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Mortality</td>
<td>RCT 3</td>
<td>Not calculated</td>
<td>I=0-4.1%</td>
<td>C=0-7.5% n.s.</td>
</tr>
<tr>
<td>Amputation</td>
<td>RCT 3</td>
<td>Not calculated</td>
<td>I=0-4.0%</td>
<td>C=0-12.0% n.s.</td>
</tr>
<tr>
<td>Restenosis ¹</td>
<td>RCT 4</td>
<td>Not calculated</td>
<td>LLL: I=0.64 (SD 0.9), C=1.81 (SD 0.1) p=0.01</td>
<td>PP: I=67-76%, C=40-55% p from 0.04 to n.s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLR: I=7.7-29%, C=25-48% p from 0.02 to n.s.</td>
</tr>
<tr>
<td>Rutherford score (symptom severity)</td>
<td>RCT 1</td>
<td>Not calculated</td>
<td>ΔRuth from baseline: I=1.6 (SD 1.3) C=2.1 (SD 1.3) p not stated</td>
<td></td>
</tr>
</tbody>
</table>
5. Participants

Participants from activities of the health care system
Mårten Falkenberg, MD, Associate Professor, Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden.
Joakim Nordanstig, MD, Department of Vascular Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.
Per Carlson, MD, Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden.
Kristian Smidfelt, MD, Department of Vascular Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.

Participants from the HTA-centre
Jonas Pettersson, librarian, Medical Library, Sahlgrenska University Hospital, Göteborg, Sweden.
Henrik Sjövall, MD, Professor, Petteri Sjögren, DDS, PhD, Therese Svanberg, HTA-librarian. All at the HTA-centre of Region Västra Götaland, Göteborg, Sweden.

The question was posed by
Mårten Falkenberg, MD, Associate Professor, Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden.
Joakim Nordanstig, MD, Department of Vascular Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.

External reviewers
Mikael Dellborg, MD, Professor, Department of Medicine, Östra Sahlgrenska University Hospital, Göteborg, Sweden.
Lennart Andrén, MD, Associate Professor,

Conflicts of interest for the proposer or any of the participants
Mårten Falkenberg has assignments as proctor and lecturer for the companies COOK, Cordis, Gore, Medtronic, and Johnson & Johnson, that have products within this area. Mårten Falkenberg is principal investigator for Swedish Drug Elution Trial in Peripheral Arterial Disease (SWEDEPAD), granted by Vetenskapsrådet and The Swedish Heart-Lung Foundation (Hjärt-Lungfonden), and supported through reduced costs for endovascular appliances by the companies: Bard, COOK, Meliora Medtech, Boston Scientific, and Vascular EPS.

Project time
HTA was accomplished during the period of 2013-05-01 - 2015-04-29
Last up-date of the literature searches was made in November 2014.
Peripheral artery disease and its degree of severity

Symptomatic peripheral artery disease due to atherosclerosis (PAD) is the most common indication for vascular surgical interventions in Sweden. PAD causes, to various degrees, a reduction in the blood flow through the arteries transporting blood to the lower limbs resulting in tissue hypoxia. When symptoms occur they may vary from pain during exercise or walking (i.e. intermittent claudication) to severe blockage of the arteries in the lower extremities (i.e. critical ischemia). Patients with intermittent claudication can walk varying distances before onset of pain, which in the more serious cases may impair their quality of life. Those with critical ischemia suffer from chronic at-rest pain, ulcers, or gangrene, and have a markedly elevated risk for amputation.

- Risk of premature death.
- Risk of permanent illness or damage, or reduced quality of life.
- Risk of disability and health-related quality of life.

Prevalence and incidence of peripheral artery disease

Based on the population and age distribution in Region Västra Götaland and national prevalence data on PAD, there are approximately 4,400 individuals with critical ischemia, and 25000 individuals with intermittent claudication in the region (Sigvant et al., 2007)

According to data from the National Registry of Vascular Surgery (SWEDVASC), in the year 2012 approximately 4,900 patients in Sweden had an invasive intervention for PAD in a lower extremity. Barely 2/3 of these patients had critical ischemia, and slightly over 1/3 had intermittent claudication. The number of invasive interventions for lower extremity PAD has, according to SWEDVASC, increased in number every year during the last five years. In year 2012, in Sweden, the proportion of patients that were treated with minimally invasive procedures (endovascular intervention) in the iliac arteries was approximately 80 % versus 70 % for the infrainguinal arteries.

Present treatment of peripheral artery disease

Chronic PAD in the lower extremities is diagnosed and treated both within primary care and inpatient care. In primary care the diagnosis can be verified by clinical assessment and peripheral blood pressure measurements. Risk factors such as smoking, heredity and metabolic disturbances should be identified and corrected if possible. Patients with severely decreased peripheral blood pressure and at-rest pain, ulcerations or gangrene, meet the diagnostic criteria for critical ischemia and are at risk for amputation. These patients should immediately be referred to a vascular surgery clinic for consideration of invasive intervention.

Patients with intermittent claudication have a milder form of PAD and should primarily be treated with life-style changing approaches (e.g. smoking cessation and exercise), platelet inhibitors (mainly aspirin) and, when needed, treatment of hypertension, blood lipids, and diabetes. If these measures do not alleviate the symptoms within a 6-12 month period and the patient still has a PAD related reduction in walking capacity, the patient should be referred to a vascular surgery clinic for consideration of invasive treatment.
Invasive treatment of PAD is often conducted in out-patient care. However, at Sahlgrenska University hospital, these treatments are conducted in inpatient care, and may be performed with either open surgery or endovascularly. In open surgery, the obstructive lesions in the vessel are either removed (thrombendarterectomy) or bypassed. Endovascular intervention is guided on the basis of X-ray with a contrast agent to visualize the blood vessels.

For endovascular intervention against infrainguinal claudication, when indicated, critical ischemia in the lower extremity, access to the blood vessel is made through the groin, and the narrowed or occluded section is passed with a thin metal guide-wire. When the conductor has passed the narrow section the vessel is dilated from the inside with a ‘balloon’ (percutaneous transluminal angioplasty, PTA). The balloon causes intentional damage to the thickened and calcified vessel wall by increasing its inner diameter, thereby allowing passage of sufficient blood flow to the affected limb. Sometimes the balloon angioplasty is supplemented with a stabilizing stent consisting of a tubular metal grid.

In recent years, the endovascular interventions have become increasingly common while the open surgical procedures have decreased in number. One reason for this is that an endovascular intervention is less demanding for the patient and can be performed under local anaesthesia through a small puncture in the groin. Open surgery involves a greater risk for cardiovascular complications and requires long incisions to expose the arteries, leading to longer hospital stays and longer convalescence periods. However, the endovascular technique bears a major problem compared to open surgery. An initial success with improved blood flow is in some cases followed by so-called restenosis, or re-narrowing of the arteries. The mechanism is probably that the balloon-caused injury to the vessel wall induces a vigorous wound healing process, with cell proliferation and connective tissue formation, which narrows the vessel lumen again. If restenosis occurs, the blood flow decreases again and the symptoms return. Thus, restenosis remains a significant problem after endovascular interventions.

Number of patients per year who are treated for peripheral arterial disease
In Sweden (SWEDVASC) during year 2012, approximately 4,900 patients were invasively treated for PAS in the lower limbs, of which 3,550 were treated endovascularly and 1,350 with open surgery. The corresponding numbers, in 2012, for Region Västra Götaland (Sahlgrenska University Hospital, Södra Älvsborg Hospital, Norra Älvsborg Hospital, and Skövde Hospital) were approximately 760 invasively treated patients, of which 530 (70 %) were treated endovascularly.

The normal pathway of a patient through the health care system
Typically, patients with critical ischemia and some patients with more severe intermittent claudication are referred from primary care to the vascular surgery clinics. If invasive intervention is warranted it is carried out at a vascular surgery department. It is particularly important that patients with critical limb ischemia get a rapid handling in order to minimize suffering and risk for gangrene and amputation. For endovascular interventions, the length of the hospital stay is normally about 24 hours. In some cases the intervention can also be carried out in the outpatient setting. The hospital stay may however be prolonged if additional care is needed, such as advanced pain relief, treatment of ulcers, or if reoperation of wound infections or hospital based rehabilitation is required. Sometimes patients (mostly with critical ischemia) contact the vascular surgery department directly, or get referred from the emergency care unit with particularly severe symptoms, intolerable pain and/or progressive ulceration.
Current waiting time in days for medical assessment
For patients with critical ischemia, the waiting time must not exceed 2-3 weeks and if the symptoms are particularly severe, more rapid or even emergency care is required. Preoperative assessment with non-invasive imaging with ultrasound, CT or MRI, is preferred before invasive procedures are started, and should be initiated as soon as possible.

For intermittent claudication patients, rapid handling is not warranted to the same extent. The most important measures can be initiated already at the primary care level and when invasive treatment is considered necessary the treatment should normally be initiated within three months from the decision.

These stipulated lead times are normally held in the Västra Götaland region for patients with the highest priority. However, this is not always the case for patients with lower priority patients due to a limited capacity for endovascular interventions at the Sahlgrenska University Hospital.

7. Drug eluting balloons and stents in peripheral arterial disease

Background
As stated above, the major problem with endovascular treatment of PAD, as well as in coronary vessels (recently reviewed by SBU, 2014), is restenosis and this may occur after balloon treatment with or without subsequent stenting. In an attempt to reduce this risk, the balloon or stent is coated with a drug that inhibits cell proliferation. Inhibition of cell proliferation suppresses the healing process after vascular dilatation, and thereby reduces the renarrowing of the vessel, locally and without a systemic effect.
The antiproliferative drugs have their origins in treatment of malignant tumours. The most commonly used substance is paclitaxel, which is used for treatment of breast cancer. Paclitaxel is used in both balloons and stents. Other drugs used in balloons and stents are sirolimus and everolimus.

Drug eluting balloons and stents are used in a similar way as conventional, non-drug eluting devices. The drugs are released in a time-dependent manner from the coating and transferred into the vessel wall, whereafter the drug appears to be washed off into the bloodstream (Grenada et al., 2014; Zhao et al., 2012). The main technical differences consist in the need for a somewhat longer recommended insufflation time for the balloons, and a more active postoperative platelet inhibition treatment regimen.

The current HTA critically evaluates the effectiveness and risks of the novel technology with drug eluting balloons and stents regarding mortality, amputations, restenosis or clinical outcomes after treatment of PDA. Drug eluting devices are today used for the majority of patients undergoing a similar treatment in coronary arteries, but this is not the case for leg artery disease. Use of drug-eluting devices involves a major increase in costs as compared with conventional non-drug eluting devices.

The potential value of drug eluting balloons and stents in peripheral arterial disease
If effective, reduction of the risk for restenosis with the use of drug eluting balloons and stents may improve the benefit to the patient and might motivate the higher cost.

Diagnoses: I70.2 and I73.9B.
The central question for the current HTA project in one sentence
Do drug eluting balloons and stents improve the effectiveness and reduce the risks compared with uncoated balloons and stents in endovascular treatment of lower limb symptomatic peripheral arterial disease (PAD)?

PICO P= Patients, I= Intervention, C= Comparison, O=Outcome

P1 = Adults with intermittent claudication due to PAD in lower extremity

P2 = Adults with critical ischemia due to PAD in lower extremity

P3 = Mixed populations of P1 or P2

I= Endovascular treatment with drug (antiproliferative) eluting balloons or stents

C= Endovascular treatment with non-drug eluting balloons and stents

Critical for decision making
O1= Mortality (Mort)
O2= Amputation (Amp)
O3= Restenosis (rest) (measured as: binary patency late lumen loss, primary patency, target lesion revascularization (see also O6)

Important for decision making
O4 = Health related quality of life (HRQoL)
O5 = Walking distance (Wd), pain free
O6 = Reintervention (in the same vascular segment)
O7 = Rutherford score (Ruth), symptom severity (1-6)

Comments on patient populations and outcome variables:

Patient groups P1 and P2 are handled differently as detailed above and therefore need to be considered separately. However, this distinction is not made in several of the large trials and therefore we also decided to separately evaluate studies based on P3, i.e. the mixed population.

With regard to outcomes, O1, O2, O4, and O5 are clearly patient-related outcomes, while O6 is a mixed outcome determined by the physician. Since restenosis is the dominating mechanism behind poor results, there have been attempts to quantify the degree of restenosis using the outcome variables primary patency or binary restenosis and late lumen loss (for definitions, see under abbreviations). O7, the Rutherford score, is a mixed outcome measure including both patient related and surrogate variables.
8. Review of Evidence

Search strategy, study selection and references (Appendix 1)
Included studies – design and patient characteristics (Appendix 2)
Excluded articles – (Appendix 3)
Outcome tables – (Appendix 4)

Two of the authors (TS, JP) performed systematic searches in Medline, PubMed, Embase, the Cochrane Library and a number of HTA-databases in May 2013. Several updates of the searches were made, the last in November 2014. Reference lists of relevant articles were also scrutinised for additional references. Search strategies, eligibility criteria and a graphic presentation of the selection process are accounted for in Appendix 1. The same authors (TS, JP) conducted the literature searches, selected studies and independently assessed the obtained abstracts and a first selection of full-text articles for inclusion or exclusion. Any disagreements were resolved in consensus. The remaining articles were sent to all the authors, who read the articles independently and then decided in a consensus meeting which articles that should be included, except for the latest update (Nov 2014) when two of the authors (HS, PS) decided on inclusion of relevant articles.

The literature search identified a total of 965 articles (after removal of duplicates). Two authors (TS, JP) then excluded 871 articles after reading their abstracts. Another 28 articles were excluded by the same authors after reading the articles in full text. The remaining 66 articles were sent to all the authors, and 34 of them were finally included in the report. 17 were randomised controlled trials (RCT), four were cohort studies and fourteen case series. The RCTs and cohort studies have been critically appraised. The appraisal of articles is based on checklists from SBU (Swedish Council on Health Technology Assessment) regarding RCTs and cohort studies. Excluded articles are listed in Appendix 3. The quality of evidence was rated according to the Grade system.

The present knowledge of drug eluting balloons and stents in peripheral arterial disease

General comment on heterogeneity
The material consisted of 17 RCTs, four cohort studies and 13 case series, each with more than 100 patients (our limitation level). In addition, we identified 11 systematic reviews/meta-analyses consistent with the PICO.

The case-series were only used to extract data on adverse events and complications. Since none of the identified systematic reviews (Antoniou et al., 2013; Biondi-Zoccai et al., 2013; Canaud et al., 2014; Cassese et al., 2012; Fusaro et al., 2013a; 2013b; Jens et al., 2014a, 2014b; Katsanos et al., 2013b, 2014; Razavi et al., 2014) covered the same amount of recent literature as the current report, only primary publications of controlled studies were considered for data extraction.

The data extraction was based on 17 RCTs and four cohort studies, reporting on 14 different patient materials with a follow up time from 6 to 36 months. The antiproliferative drug used was everolimus in two studies, paclitaxel in 11 studies, and sirolimus in eight studies. Eight RCTs and four cohort studies compared drug eluting stents (DES) with bare metal stents (BMS), and nine RCTs compared drug eluting balloons (DEB) with uncoated balloons (UCB).

Regarding intermittent claudication patients only (P1), separate data were only found as a subgroup analysis in one RCT (Rastan et al., 2011).
Data on patient populations with indications for treatment of \textit{critical ischemia} (P2), were presented in four RCTs (Bosiers \textit{et al.}, 2012; Liistro \textit{et al.}, 2013b; Rastan \textit{et al.}, 2011 [subgroup analysis]; Zeller \textit{et al.}, 2014b) and in (all identified) four cohort studies (Karnabatidis \textit{et al.}, 2011, Siablis \textit{et al.}, 2005, 2007, 2009).

In the cohort studies, the comparison was in all cases drug eluting stent (DES) vs. bare metal stent (BMS). In one study with 36 months follow-up, the drug was everolimus (Karnabatidis \textit{et al.}, 2011), and in the remaining three studies (same material at 6, 12 and 36 months), it was sirolimus (Siablis \textit{et al.}, 2005; 2007; 2009). Mortality, amputation rates and restenosis data were reported in all four cohort studies.

Data on mixed materials (P3) - \textit{critical ischemia and intermittent claudication} patients - was reported in the 14 remaining studies, all RCTs. Seven RCTs compared DES vs BMS, and seven compared DEB vs uncoated balloon (UCB). Four of these studies had included above-knee lesions only, three had included below-knee lesions only, and seven had included mixed lesions, above and/or below the knee.

Among the 17 RCTs, four had a follow up time of 6 months, seven 12 months, one 18 months, five 24 months and one 36 months. The total number of studied participants was >2,000 (some studies report partly on the same material).

The choice of outcome variables varied markedly across the studies (Table 1). The most common patient-related outcome variables, also included in our PICO, were mortality (20 studies - in many cases considered and handled as an adverse event) and amputation rate (18 studies). Often various angiographic parameters were used to evaluate restenosis (20 studies - e.g. late lumen loss, primary patency). Reinterventions were measured as (need of) target lesion revascularization (20 studies), and changes in symptom severity were frequently measured with Rutherford score (12 studies). We found no study describing HRQoL-data or pain free walking distance.
Table 1. Included controlled studies with the studied interventions (I), comparisons (C), the active substances used, and follow-up periods (outcomes within parentheses) [PICO: P 1-3 within brackets]

<table>
<thead>
<tr>
<th>Site</th>
<th>I/C</th>
<th>Everolimus</th>
<th>Paclitaxel</th>
<th>Sirolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Duda, 2013 24 mo, (Mort, Amp, Rest, Ruth)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P2] Cohort: Karnabatädis, 2011 36 mo, (Mort, Amp, Rest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P2] RCT: Läästro, 2013b 12 mo, (Mort, Amp, Rest, Ruth)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P2] RCT: Zeller, 2014b 12 mo, (Mort, Amp, Rest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above and/ or below the knee lesions</td>
<td>DES/BMS</td>
<td>[P3] RCT: Fanelli, 2012 6 mo, (Mort, Amp, Rest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Fanelli, 2014b 12 mo, (Mort, Amp, Rest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Scheinert, 2014 24 mo, (Mort, Amp, Rest, Ruth)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Tepe, 2008 24 mo, (Mort, Amp, Rest, Ruth)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Tepe, 2013 * 24 mo, (Rest)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEB/UCB</td>
<td>[P3] RCT: Werk, 2008 18 mo, (Mort, Amp, Rest, Ruth)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amp = Amputation, BMS = Bare metal stent, DEB = Drug-eluting balloon, DES = Drug-eluting stent, Mort = Mortality, P1 = Patients with intermittent claudicatio, P2 = Patients with critical ischemia, P3 = Mixed population with patients belonging to P1 and P2 (not separated), QoL = Quality of life, RCT = Randomized controlled trial, Rest = Restenosis (late lumen loss, primary patency, target lesion revascularization), Ruth = Rutherford symptom score, UCB = Uncoated balloon.

* Patients with non-flow-limiting dissections from the THUNDER study.

Underlining of an outcome indicates low certainty of evidence (GRADE ⊕⊕⊕⊕) for a positive effect favouring drug eluting stent or balloon, compared with uncoated stent or balloon. **Bold font** indicates a numerical (or significant) unfavourable effect for the outcome drug eluting stent or balloon, compared with uncoated stent or balloon.
P1: Patients with intermittent claudication

There were no studies with everolimus in this patient group.

Critical outcomes

Mortality (Appendix 2 and Appendix 4:1)

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee

This patient group was studied in one RCT (n=86), in a subgroup analysis (Rastan *et al.*, 2011). No flowchart was presented for the subgroup which generates concerns, both regarding directness and study limitations. Mortality at 12 months was 12% in the DES group and 6% in the BMS group (n.s.).

Conclusion: It is uncertain whether there is little or no difference in mortality comparing DES (sirolimus) with BMS below the knee, in patients with intermittent claudication.

Very low certainty of evidence (GRADE ⊕).☆☆☆☆☆.

Amputation

Was not studied in this patient group.

Restenosis (Appendix 2 and Appendix 4:1)

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee

Restenosis in this patient group studied in one RCT (n=86) reporting 12 month data, with similar limitations as for mortality (Rastan *et al.*, 2011).

Significant difference was only seen for PP with 85% for DES versus 55% for BMS (p=0.006). TLR was 6% for DES and 20% for BMS (n.s.) (Rastan *et al.*, 2011).

Conclusion: It is uncertain whether there is any difference in restenosis comparing DES (sirolimus) with BMS below the knee, in patients with intermittent claudication.

Very low certainty of evidence (GRADE ⊕).☆☆☆☆☆.

Rutherford score (symptom severity) (Appendix 2 and Appendix 4:1)

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee

Rutherford score was studied in one RCT (n=86) with 12 month data (Rastan *et al.*, 2011).

No significant difference between the study groups was seen regarding change in the Rutherford score (ΔRuth: -1.5 for DES and -1 for BMS, n.s.).

Conclusion: It is uncertain whether there is any difference in symptom severity measured with Rutherford score comparing DES (sirolimus) with BMS below the knee, in patients with intermittent claudication.

Very low certainty of evidence (GRADE ⊕).☆☆☆☆☆.

P2: Critical ischemia patients

Critical outcomes

Mortality (Appendix 2 and Appendix 4:2)

Drug eluting stent (DES) with everolimus vs. bare metal stent (BMS) – Below the knee

The effect of DES with everolimus vs. BMS on 12-month mortality was studied in one RCT (n=140) and one cohort study (n=81), in patients with below the knee disease (Bosiers *et al.*, 2012, Karnabatidis *et al.*, 2011).

The RCT reported 18% versus 16% (n.s.) mortality (Bosiers *et al.*, 2012), and the cohort study 5% versus 15% (n.s.) mortality in the DES and the BMS groups, respectively (Karnabatidis *et al.*, 2011).

Conclusion: DES (everolimus) compared with BMS below the knee, may result in little or no difference in mortality in patients with critical ischemia. Low certainty of evidence (GRADE ⊕).☆☆☆☆☆.

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee

The effect of DES with sirolimus vs. BMS on mortality, was studied in one RCT (n=75) (subgroup analysis, Rastan *et al.*, 2011) and three cohort studies based on the same material with 6, 12 and 36 months
follow up times (Siablis et al., 2005, 2007, 2009). Only three of the studies reported mortality at 12-months (Rastan et al., 2011; Siablis et al., 2007, 2009).

In the RCT there was 21% mortality in the DES groups versus 24% (n.s.) in the BMS group (Rastan et al., 2011). The two cohort studies reported 14% (n=58) and 8% (n=103) mortality rates in the DES groups versus 10% and 12% in the BMS groups (both n.s.), respectively (Siablis et al., 2007, 2009).

Conclusion: It is uncertain whether there is any difference in mortality comparing DES (sirolimus) with BMS below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕○○○○).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Below the knee

The effect of DEB with paclitaxel vs. UCB on 12-month mortality was studied in two RCTs (Liistro et al., 2013; Zeller et al., 2014b). In both RCTs there was a numerical but not significantly higher mortality in the DEB group.

Liistro et al. (2013) (n=132) reported 8% mortality in the DEB group versus 4% (n.s.) in the BMS group. In the other RCT by Zeller et al. (2014b) (n=358) a marked discrepancy in reported mortality was noted between the trial flowchart, with 18% mortality for DEB versus 15% for BMS (p=0.4631) and the data reported as trial results, with 10% mortality for DEB versus 8% for BMS (p=0.5626).

Meta-analyses of the combined effect estimates of the two RCTs, regarding the different scenarios according to the results section versus flowchart data from Zeller et al. (2014b) are shown in Figure 1 and Figure 2, respectively (Liistro et al., 2013; Zeller et al., 2014b).

Conclusion: DEB (paclitaxel) compared with UCB below the knee, may result in little or no difference in mortality in patients with critical ischemia. Low certainty of evidence (GRADE ⊕□□□).

Figure 1.
Combined effect estimates of mortality in the two RCTs according to results in Zeller et al. (2014b).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DEB Paclitaxel</th>
<th>UCB</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro 2013b</td>
<td>5 Events</td>
<td>65 Total</td>
<td>22.9%</td>
<td>1.78 [0.41, 7.75]</td>
</tr>
<tr>
<td>Zeller 2014b</td>
<td>23 Events</td>
<td>239 Total</td>
<td>77.1%</td>
<td>1.30 [0.56, 2.91]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>30 Events</td>
<td>186 Total</td>
<td>100.0%</td>
<td>1.40 [0.69, 2.83]</td>
</tr>
<tr>
<td>Total events</td>
<td>28</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.
Combined effect estimates of mortality in the two RCTs according to flowchart in Zeller et al. (2014b).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DEB Paclitaxel</th>
<th>UCB</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro 2013b</td>
<td>5 Events</td>
<td>65 Total</td>
<td>14.2%</td>
<td>1.78 [0.41, 7.75]</td>
</tr>
<tr>
<td>Zeller 2014b</td>
<td>44 Events</td>
<td>239 Total</td>
<td>65.8%</td>
<td>1.27 [0.70, 2.33]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>30 Events</td>
<td>186 Total</td>
<td>100.0%</td>
<td>1.33 [0.75, 2.31]</td>
</tr>
<tr>
<td>Total events</td>
<td>49</td>
<td>21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amputation (Appendix 2 and Appendix 4.2)

Drug eluting stent (DES) with everolimus vs. bare metal stent (BMS) – Below the knee

One RCT (n=140) and one cohort study (n=81) compared the effect of DES with everolimus vs. BMS on amputation rate over 12-months (Bosiers et al., 2012; Karnabatidis et al., 2011).

The RCT reported one amputation in the DES group versus two amputations (n.s.) in the BMS group (Bosiers et al., 2012). The cohort study reported 97% limb salvage in the DES groups versus 92% (n.s.) in the BMS group (Karnabatidis et al., 2011).

Conclusion: It is uncertain whether there is any difference in amputation rate comparing DES (everolimus) with BMS below the knee, in patients with critical ischemia.

Very low certainty of evidence (GRADE ⊕□□□□).
Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
The effect of DES with sirolimus vs. BMS on amputation rate at 12 months was studied in one RCT and two cohort studies (same material, different time points) (Rastan et al., 2011; Siablis et al., 2007, 2009). The RCT (n=75) reported 3% rate for both minor and major amputations in the DES group versus 4% minor and major amputation rates (both n.s.) in the BMS group (Rastan et al., 2011). The cohort study by Siablis et al. (2007) (n=58) reported 10% minor and 3% major amputation rates, in the DES group, versus 17% and 0% (n.s.) in the BMS group. The limb salvage was 96% in the DES group and 100% (n.s.) in the BMS group (Siablis et al., 2007). The other cohort study (n=103, same material, at 12-months) reported approx. 92% limb salvage rate in the DES group versus approx. 90% (n.s.) in the BMS group (Siablis et al., 2009).

Conclusion: It is uncertain whether there is any difference in amputation rate comparing DES (sirolimus) with BMS below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕ └┘ └┘).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Below the knee
Two RCTs compared the effects of DEB with paclitaxel vs. UCB regarding 12-month amputation rate (Liistro et al., 2013b; Zeller et al., 2014b).
The RCT by Liistro et al. (2013b) (n=132) reported 0% amputations in the DEB group versus 2% (n.s.) in the UCB group. In the other RCT by Zeller et al. (2014b) (n=358) an important safety signal was detected. A major discrepancy in the number of amputations reported in the trial flowchart was noted, with 15% amputations for DEB versus 7% for UCB (p=0.0181), and the number of amputations reported in the results section, with 9% amputations for DEB versus 4% for UCB (p=0.080). Thus, according to the flowchart, but not according to the results section, there was a significantly higher rate of major amputations in the DEB group compared with the UCB group (Zeller et al., 2014b).

Meta-analyses of the combined effect estimates of the two RCTs, regarding the different scenarios, according to the results section versus flowchart data from Zeller et al. (2014b) are shown in Figure 3 and Figure 4, respectively (Liistro et al., 2013b; Zeller et al., 2014b).

Conclusion: It is uncertain whether there is little or no difference in amputation rate comparing DEB (paclitaxel) with UCB below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕ └┘ └┘).

Figure 3.
Combined effect estimates of amputations in the two RCTs according to results in Zeller et al. (2014b).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DEB Paclitaxel</th>
<th>UCB</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro 2013b</td>
<td>0</td>
<td>65</td>
<td>1</td>
<td>67</td>
<td>21.2%</td>
<td>0.34 [0.01, 8.48]</td>
</tr>
<tr>
<td>Zeller 2014b</td>
<td>20</td>
<td>227</td>
<td>4</td>
<td>111</td>
<td>78.8%</td>
<td>2.68 [0.86, 7.75]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>292</td>
<td>178</td>
<td>100.0%</td>
<td></td>
<td>1.68</td>
<td>[0.33, 8.56]</td>
</tr>
<tr>
<td>Total events</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity Tau² = 0.58; Chi² = 1.37; df = 1; (P = 0.24); I² = 27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.62 (P = 0.53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.
Combined effect estimates of amputations in the two RCTs according to flowchart in Zeller et al. (2014b).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DEB Paclitaxel</th>
<th>UCB</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro 2013b</td>
<td>0</td>
<td>65</td>
<td>1</td>
<td>67</td>
<td>18.9%</td>
<td>0.34 [0.01, 8.48]</td>
</tr>
<tr>
<td>Zeller 2014b</td>
<td>37</td>
<td>239</td>
<td>8</td>
<td>119</td>
<td>81.1%</td>
<td>2.64 [1.14, 5.65]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>304</td>
<td>186</td>
<td>100.0%</td>
<td></td>
<td>1.74</td>
<td>[0.37, 8.16]</td>
</tr>
<tr>
<td>Total events</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity Tau² = 0.66; Chi² = 1.42; df = 1; (P = 0.23); I² = 30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.70 (P = 0.48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restenosis (Appendix 2 and Appendix 4:2)
Drug eluting stent (DES) with everolimus vs. bare metal stent (BMS) – Below the knee

HTA-report Drug eluting balloons and stents in peripheral arterial disease. 22(30)
The effect of DES with everolimus vs. BMS on restenosis at 12 months was studied in one RCT and in one cohort study (Bosiers et al., 2012; Karnabatidis et al., 2011). The RCT (n=140) reported significant improvements for the DES group compared with the BMS group, regarding LLL (DES 21%, BMS 47%, p<0.0001), PP (DES 85%, BMS 54%, p=0.001), and TLR (DES 9%, BMS 34%, p=0.001) (Bosiers et al., 2012). The cohort study (n=81) reported approx. 87% primary patency in the DES group versus approx. 59% in the BMS group (p value not shown) (Karnabatidis et al., 2011).

Conclusion: DES (everolimus) compared with BMS below the knee in patients with critical ischemia, may reduce restenosis as measured by angiographic outcomes and need for reintervention. Low certainty of evidence (GRADE ⊕⊕).

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
The effect of DES with sirolimus vs. BMS on restenosis at 12 months was studied in one RCT (n=75) (subgroup analysis) and one cohort study (n=58) (Rastan et al., 2011; Siablis et al., 2007). The findings were inconsistent. In the RCT, the PP (DES 75%, BMS 56%), TLR rates (DES 14%, BMS 13%) did not differ significantly between the groups (Rastan et al., 2011), whereas the cohort study reported significant differences in PP (DES 87%, BMS 41%, p<0.001) and need for TLR (DES 9.1%, BMS 26%, p=0.02) (Siablis et al., 2007).

Conclusion: It is uncertain whether there is any difference in restenosis rate comparing DES (sirolimus) with BMS below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Below the knee
DCB was compared with UCB in two RCTs using paclitaxel (Liistro et al., 2013b; Zeller et al., 2014b). One RCT (n=132) showed significant difference in favour for DCB regarding binary restenosis (DEB 27%, UCB 74%, p<0.001), TLR (DCB 10%, UCB 20%, p=0.02) (Liistro et al., 2013b), whereas in the other RCT (n=358) there were no significant differences between the DCB and UCB groups, with binary restenosis at 41% versus 36%, LLL at 0.60 versus 0.62, and TLR at 12% versus 14%, respectively (Zeller et al., 2014b).

Conclusion: It is uncertain whether there is little or no difference in restenosis rate comparing DEB (paclitaxel) with UCB below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕).

Rutherford score (symptom severity) (Appendix 2 and Appendix 4:2)
Drug eluting stent (DES) with everolimus vs. bare metal stent (BMS) – Below the knee
The effect of DES with everolimus vs. BMS on Rutherford symptom score at 12 months was reported in one RCT (n=140), with no Rutherford symptom score improvement (one or more classes), with DES group 60%, and BMS at 56% (n.s.) (Bosiers et al., 2012).

Conclusion: DES (everolimus) compared with BMS below the knee may result in little or no difference in symptom severity as measured by Rutherford score, in patients with critical ischemia. Low certainty of evidence (GRADE ⊕).

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
The effect of DES with sirolimus vs. BMS was studied in one RCT (n=75) (subgroup analysis) at 12 months (Rastan et al., 2011). The Rutherford symptom score change did differ over time between the groups (ΔRuth: DES -3, BMS -2, n.s.) (Rastan et al., 2011).

Conclusion: It is uncertain whether there is any difference in symptom severity as measured by Rutherford score comparing DES (sirolimus) with BMS below the knee, in patients with critical ischemia. Very low certainty of evidence (GRADE ⊕).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Below the knee
DCB was compared with UCB in one RCT (n=132) using paclitaxel (Liistro et al., 2013b). The RCT showed significant difference in favour for DCB regarding change in Rutherford symptom score (ΔRuth: DCB 4.3, UCB 3.1, p=0.004) (Liistro et al., 2013b).
Conclusion: DEB (paclitaxel) compared with UCB below the knee may slightly reduce symptom severity as measured by Rutherford score, in patients with critical ischemia. Low certainty of evidence (GRADE ⊕⊕⊥⊥).

P3: Mixed population (critical ischemia and intermittent claudication patients)
There were no studies with everolimus in this patient group.

Mortality (Appendix 2 and Appendix 4:3)
Drug eluting stent (DES) with paclitaxel vs. bare metal stent (BMS) – Above the knee
DES with paclitaxel vs. BMS in the above the knee lesion group was compared in two RCTs stating mortality data (Dake et al., 2011a, 2013).
One of the RCTs (n=479) reported 4% mortality in the DES group versus 2% (n.s.) in the BMS group at 12-months follow-up (Dake et al., 2011a).
Conclusion: It is uncertain whether there is little or no difference in mortality comparing DES (paclitaxel) with BMS above the knee, in a mixed patient population with critical ischemia and intermittent claudication. Low certainty of evidence (GRADE ⊕⊕⊥⊥).

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Above the knee
Mortality data comparing DES with sirolimus with BMS above the knee in this population was studied in two RCTs, reporting on same material after 6 and 24 months (Duda et al., 2005, 2006). There was 7% mortality in DES group versus 4% (n.s.) BMS group at 6 months. At 24 months, there was 15% mortality in the DES group versus 4% (n.s.) in BMS group. Since 12-month data on mortality was not reported, the outcome was not graded for certainty of evidence.

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
DES with sirolimus vs. BMS in the below the knee lesion population was compared in three RCTs (Falkowski et al., 2009; Rastan et al., 2011; Rastan et al., 2012), two reporting data from the same material at 12 and 36 months. Mortality rate at 12 months in Rastan et al. (2011) (n=161) was 17% in the DES group and 14% (n.s.) in the BMS group.
Conclusion: DES (sirolimus) compared with BMS below the knee may result in little or no difference in mortality, in a mixed patient population with critical ischemia and intermittent claudication.
Low certainty of evidence (GRADE ⊕⊕⊥⊥).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Above and/or below the knee
Mortality data comparing DEB with paclitaxel vs. UCB in the mixed population with lesions above and/or below the knee was reported in six RCTs (Fanelli et al., 2012, 2014b; Scheinert et al., 2014; Tepe et al., 2008; Werk et al., 2008, 2012).
Three of the studies, Fanelli et al. (2014b) (n=50), Scheinert et al. (2014) n=101, and Werk et al. (2012) (n=85), reported 12 month data, with mortality ranging between 0-4% in the DEB groups versus 0-8% (all n.s.) in the UCB groups.
Conclusion: DEB (paclitaxel) compared with UCB above and/or below the knee may result in little or no difference in mortality, in a mixed patient population with critical ischemia and intermittent claudication.
Low certainty of evidence (GRADE ⊕⊕⊥⊥).

Amputation (Appendix 2 and Appendix 4:4)
Drug eluting stent (DES) with paclitaxel vs. bare metal stent (BMS) – Above the knee
DES with paclitaxel vs. BMS, above the knee in this population was studied in two RCTs (Dake et al., 2011a, 2013), but only Dake et al. (2011a) (n=479) reported 12-months data, with 0.5% amputations in the DES group versus 0% (n.s.) in the BMS group.
Conclusion: DES (paclitaxel) compared with BMS above the knee may result in little or no difference in amputation rate, in a mixed patient population with critical ischemia and intermittent claudication.
Low certainty of evidence (GRADE ⊕⊕⊥⊥).
Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Above the knee
Absence of amputations, as complication to the stent procedure, was reported in one RCT comparing DES with sirolimus with BMS in the above the knee lesion group at 24 months (Duda et al., 2006). Since twelve-month data on amputations were not reported, the outcome was not graded for certainty of evidence.

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
DES with sirolimus vs. BMS in the below the knee group was studied in one RCT (n=161) regarding amputation rate over 12 months (Rastan et al., 2011). There were 3% amputations in the DES group versus 6% (n.s.) in the BMS group (Rastan et al., 2011). Conclusion: DES (sirolimus) compared with BMS below the knee may result in little or no difference in amputation rate, in a mixed patient population with critical ischemia and intermittent claudication. Low certainty of evidence (GRADE ⊕⊕⊕○○).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Above and/or below the knee
Amputation rates comparing DEB with paclitaxel vs. UCB in the above and/or below the knee lesion group was reported in six RCTs (Fanelli et al., 2012, 2014b; Scheinert et al., 2014; Tepe et al., 2008; Werk et al., 2008, 2012). Three of the studies, Fanelli et al. (2014b) (n=50), Scheinert et al. (2014) n=101, and Werk et al. (2012) (n=85), reported 12 month data, with amputations ranging between 0-4% in the DEB groups versus 0-12% (all n.s.) in the BMS groups.

Conclusion: DEB (paclitaxel) compared with UCB above and/or below the knee may result in little or no difference in amputation rate, in a mixed patient population with critical ischemia and intermittent claudication. Low certainty of evidence (GRADE ⊕⊕⊕○○).

Restenosis (Appendix 2 and Appendix 4:5)
Drug eluting stent (DES) with paclitaxel vs. bare metal stent (BMS) – Above the knee
DES with paclitaxel vs. BMS (above the knee) was compared in two RCTs with outcome restenosis (12 and 24 month follow-up) (Dake et al., 2011a, 2013). At 12 months, Dake et al. (2011a) (n=479) reported significant improvements regarding PP (DES 83%, BMS 33%, p<0.001), and TLR (DES 10%, BMS 18%, p=0.01).

Conclusion: DES (paclitaxel) compared with BMS above the knee, in a mixed patient population with critical ischemia and intermittent claudication, may reduce restenosis measured by angiographic outcomes. Low certainty of evidence (GRADE ⊕⊕⊕○○).

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Above the knee
DES with sirolimus vs. BMS above the knee was studied in two RCTs, one at 6 months and one at 24 months (same material) (Duda et al., 2005, 2006). The trials did not report 12-month data and the outcome was not graded for certainty of evidence.

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee
DES with sirolimus vs. BMS in below the knee lesions regarding restenosis was compared in three RCTs at 6, 12, and 36 months, respectively (Falkowski et al., 2009; Rastan et al., 2011, 2012). At 12 months, Rastan et al. (2011) (n=161) reported significant improvements regarding PP (DES 81%, BMS 56%, p=0.004), but not regarding TLR (DES 10%, BMS 18%, n.s.).

Conclusion: DES (sirolimus) compared with BMS below the knee, in a mixed patient population with critical ischemia and intermittent claudication, may reduce restenosis measured by angiographic outcomes. Low certainty of evidence (GRADE ⊕⊕⊕○○).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Above and/or below the knee
Restenosis comparing DEB with paclitaxel vs. UCB above and/or below the knee was reported in seven RCTs, with follow-up periods from 6 to 24 months (Fanelli et al., 2012, 2014b; Scheinert et al., 2014; Tepe et al., 2008, 2013; Werk et al., 2008, 2012).
Four RCTs reported data at 12 months follow-up (Fanelli et al., 2014b; Scheinert et al., 2014; Tepe et al., 2008; Werk et al., 2012). Fanelli et al. (2014) (n=50) reported significant difference in LLL (DEB 0.64, UCB 1.81, p=0.01), PP (DEB 76%, UCB 40%, p=0.04), and TLR (DEB 12%, UCB 35%, p<0.05). Werk et al. (2012) (n=81) also reported significant TLR differences with 8% in the DEB group versus 25% (p=0.02) in the UCB group. The remaining two RCTs by Tepe et al. (2008) (n=102) and Scheinert et al. (2014) (n=101) reported TLR (DEB 10% and 29%, BMS 48% and 33%, respectively, both n.s.). Scheinert et al. 2014 also reported PP (DEB 67%, UCB 55%, n.s.).

Conclusion: DEB (paclitaxel) compared with UCB above and/or below the knee, may reduce restenosis measured by angiographic outcomes and need for revascularisation in a mixed patient population with critical ischemia and intermittent claudication, Low certainty of evidence (GRADE ⊕⊕⊕).

Rutherford score (symptom severity) (Appendix 2 and Appendix 4:5)

Drug eluting stent (DES) with paclitaxel vs. bare metal stent (BMS) – Above the knee

DES with paclitaxel vs. BMS (above the knee) was compared in one RCTs (n=479) at 12 months (Dake et al., 2011a), with no significant differences in Rutherford score classification over time between the groups (n.s., ΔRuth data not shown).

Conclusion: In is uncertain whether there is any difference in symptom severity as measured by Rutherford score classification, comparing DES (paclitaxel) with BMS below the knee, in a mixed patient population with critical ischemia and intermittent claudication. Very low certainty of evidence (GRADE ⊕).

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Above the knee

Not reported at 12 months.

Drug eluting stent (DES) with sirolimus vs. bare metal stent (BMS) – Below the knee

DES with sirolimus vs. BMS in below the knee lesions regarding restenosis was compared in three RCTs at 6, 12, and 36 months, respectively Falkowski et al., 2009; Rastan et al., 2011; 2012). Rastan et al. (2001) (n=161) reported symptom severity at 12 months, with an improvement in Rutherford score classification (DES -2, BMS -1, p=0.004).

Conclusion: DES (sirolimus) compared with BMS in lesions below the knee, in a mixed patient population with critical ischemia and intermittent claudication, may slightly reduce symptom severity as measured by Rutherford score classification. Low certainty of evidence (GRADE ⊕⊕).

Drug eluting balloon (DEB) with paclitaxel vs. uncoated balloon (UCB) – Above and/or below the knee

One RCT (n=101) reported Rutherford score change at 12 months, with ΔRuth 1.6 for DEB and 2.1 for UCB (p not stated) (Scheinert et al., 2014).

Conclusion: In is uncertain whether there is any difference in symptom severity as measured by Rutherford score classification, comparing DEB (paclitaxel) with UCB above and/or below the knee, in a mixed patient population with critical ischemia and intermittent claudication. Very low certainty of evidence (GRADE ⊕).

P 1-3: Complications and adverse events (Appendix 4:6)

Complications and adverse events associated to DES or DEB were reported in 33 studies. 16 were RCTs, 4 were cohort studies and 13 were case-series. There was a vast variation in how major complications/SAEs were defined and reported across the studies. TLR was relatively commonly regarded as a major complication which contributed to very high major complication frequencies (up to 95%). Thus, TLR was common among these patients. Deaths within 12 months occurred between 0-18%, mainly related to the underlying atherosclerosis, and were sometimes reported as an SAE and sometimes a study outcome. Commonly encountered SAEa were amputations, mortality, pseudo aneurysms and thromboses, detailed in Appendix 4:6
Medical societies or health authorities that recommend drug eluting balloons and stents in peripheral arterial disease

In an HTA-report from UK National Institute for Health and Care Excellence (NICE, 2012) it was concluded that low (or very low) quality of evidence suggests that drug eluting stents in the femoropopliteal vascular segments may increase the patency one year after treatment for intermittent claudication. Patient related outcomes (walking distance and quality of life) were not studied, and the technology was not recommended. Moreover, it was concluded that drug eluting stents in femoropopliteal arteries, reduce the need of reinterventions within two years after invasive treatment (low quality of evidence, based on one study), and that drug eluting stents in infrapopliteal areas increase the ankle brachial index (i.e. ratio of the blood pressure in the lower legs to the systemic blood pressure) two years after treatment of critical lower limb ischemia (high quality of evidence, based on one study).

Ongoing research

A search in the Clinicaltrials.gov database was conducted (2014-05-05), with the search terms (iliac artery OR iliac arteries OR arteria iliaca OR iliacal arteries OR aortoiliac disease OR lower limb arterial disease OR femoropopliteal OR infrapopliteal OR crural OR "below the knee" OR peripheral arterial disease OR peripheral artery disease OR intermittent claudication OR critical limb ischemia OR critical limb ischaemia OR PAD OR chronic limb ischemia OR chronic limb ischaemia OR femoro-popliteal OR infra-popliteal OR superficial femoral artery OR superficial femoral arteries) AND (paclitaxel OR everolimus OR sirolimus OR drug-eluting OR drug-coated OR drug-releasing OR drug-emitting).

121 studies were identified, of which 78 were considered relevant for the question at issue. Twenty-one of the studies had not started recruitment of participants, 37 were recruiting participants, 16 were completed, and four studies were discontinued. 42 of the studies were industry financed and 36 reported some other source of funding.

After the literature searches and data extraction were completed an additional RCT which was consistent with our PICO was published (IN.PACT SFA trial, n=331, Tepe et al., 2015). The RCT compared DEB (paclitaxel) with UCB above and/or below the knee in a mixed patient population (intermittent claudication or critical ischemia). The primary outcome was primary patency (PP at 12 months), defined as freedom from restenosis. In this RCT there was a higher PP at 12 months in the DEB group (82%) compared with the UCB group (52%, p<0.001), with neither device- or procedure related deaths nor major amputations (Tepe et al., 2015).
9. **Ethical consequences**

Drug eluting balloons and stents is a new technology for treatment of symptomatic PAD in the lower extremities, but the patient benefits and risks have thus far not been thoroughly studied. The marketing activities are industry driven and several devices for PAD in the lower extremities have been introduced on the Scandinavian market. Introduction of new expensive, although promising, technologies into routine care on the basis of uncertain research evidence constitutes an ethical dilemma. The lack of evidence for patient benefits needs to be related to the risk of adverse effects and the cost increase.

10. **Organisation**

When drug-eluting balloons and stents can be put into practice

Provided financing, the technology could be introduced immediately. Suitable devices are available on the Swedish market.

Use of drug-eluting balloons and stents for peripheral artery disease in other hospitals in Region Västra Götaland of Sweden

The use of drug-eluting balloons and stents for peripheral artery disease has been rather limited at Swedish hospitals. This technology has recently been included in the national quality register of vascular surgery, and a few vascular surgery departments are increasingly using the technology, especially in more challenging cases where failure may substantially increase the risk of amputation.

Consequences of drug-eluting balloons and stents in peripheral artery disease for personnel

Introduction of the technology would not contribute to any substantial changes for the personnel, patient flows, or care related processes.

Consequences for other clinics or supporting functions at the hospital or in the whole Region Västra Götaland of Sweden

Introduction of the technology would not affect other departments or services at the Sahlgrenska University Hospital or in the Region Västra Götaland.
11. Economic aspects

Present costs of treatment of peripheral artery disease

The patient group with PAD is heterogeneous with regard to both health care needs and resources required in conjunction with endovascular interventions. Thus, it is difficult to specify the total cost of a routinely conducted endovascular intervention. Patients with critical ischemia in the extremities tend to have more widespread and extensive vascular disease, which may involve extended interventions, longer hospital stays, and higher material costs than for treatment of intermittent claudication. The need of hospitalisation associated with endovascular surgery has a substantial variation which is related to the severity of the PAD, and on the hospital organization. If some are treated as out-patients, without overnight stay in the hospital, the total cost for endovascular procedures may be decreased.

Estimated costs based on current figures from the Vascular-Thoracic Department at Sahlgrenska University Hospital gives a total cost for routine endovascular intervention (including perioperative inpatient care) of approximately 130,000 SEK (range: 25,000-450,000). The isolated mean cost of the endovascular intervention is 54,000 SEK (range: 7,000-125,000).

Length of hospital stay varies from one to 34 days (mean 6.5 days), and is related to individual needs of pain management, advanced treatment of ulcerations, etc.

Provided that the proportion of endovascularly treated patients remains unchanged (70%), the total annual cost (including procedure related inpatient care) of 400 patients/year in Region Västra Götaland is estimated to 130,000 x 400 x 0.7 = 36.4 MSEK, of which the isolated cost of the endovascular intervention contributes to 54,000 x 400 x 0.7 = 15.1 MSEK per year.

Expected costs of treatment with drug-eluting balloons and stents

Drug-eluting balloons and stents are more expensive than conventional devices. In some cases (e.g. stent placement in femoral artery) also a more extensive antiplatelet treatment is needed, which also contributes to a cost increase. Other procedure related costs will remain virtually unchanged.

In extended lesions several devices are needed, since the longest available balloon is 15 cm long, and the longest stent is 12 cm. The mean lesion length in Swedish studies is 15 cm in critical ischemia, and shorter in intermittent claudication. Thus, in average approximately 1.5-2 balloons/stents would be needed for each patient.

The cost of a drug-eluting balloon is 5-6,000 SEK (price is declining) and a conventional balloon costs about 1,000 SEK. A similar cost ratio exists for stents. Thus, the cost increase per device is approximately 5,000 SEK.

Total change of cost

If all eligible patients (400) should be treated with drug eluting devices, the cost increase in Region Västra Götaland would be three to four MSEK, as compared to conventional devices. The cost increase should be weighed against the effectiveness of the new technology in comparison to existing treatment. If the number of renarrowing, restenosis and reinterventions or conversion to open surgery is reduced by the drug eluting devices the total cost is reduced. With conventional devices the need of reinterventions is relatively high, mostly due to restenosis.
Possibility to adopt and use drug-eluting balloons and stents in peripheral artery disease within the present hospital budget
No.

Available published health economy analyses
The report from NICE did not identify any health economic analyses related to drug-eluting balloons and stents for PAD in the legs (NICE, 2013)

Recently Kearns et al., (2013) analysed the cost effectiveness of eight different adjuvant therapies in the endovascular treatment of infrainguinal PAD (drug-eluting balloons and stents was compared to conventional treatment). Among the eight therapies, drug eluting balloons was considered the most cost-effective treatment, both in critical ischemia and intermittent claudication.

12. Unanswered questions

Important gaps in scientific knowledge
The SBU database on 'knowledge gaps' denotes lack of evidence for an effect of drug-eluting balloons and stents for PAD in the lower extremities (SBU, 2015).

Interest in the own organisation to start studies within the research field at issue
A register-based controlled study on the effect of drug eluting balloons and stents compared with conventional therapy in infrainguinal PAD is ongoing. This national SWEDEPAD-study will analyse treatment effects with both clinical and patient centred outcomes (e.g. quality of life in intermittent claudication, risk of amputation in critical ischemia). The study will be coordinated from Sahlgrenska University Hospital. Principal investigators: Dr Mårten Falkenberg, and Dr Joakim Nordanstig. ClinicalTrials.gov Identifier: NCT02051088; http://www.clinicaltrials.gov/ct2/show/NCT02051088?term=SWEDEPAD&rank=1)
Appendix 1, Search strategy, study selection and references

Question at issue:
Do drug eluting balloons and stents improve the effectiveness and reduce the risks compared with uncoated balloons and stents in endovascular treatment of lower limb symptomatic peripheral arterial disease (PAD)?

PICO
P= Patients, I= Intervention, C= Comparison, O=Outcome

P1 = Adults with intermittent claudication due to PAD in lower extremity
P2 = Adults with critical ischemia due to PAD in lower extremity
P3 = Mixed populations of P1 or P2

I= Endovascular treatment with drug (antiproliferative) eluting balloons or stents

C= Endovascular treatment with non-drug eluting balloons and stents

Critical for decision making
O1= Mortality (Mort)
O2= Amputation (Amp)
O3= Restenosis (rest) (measured as: binary patency late lumen loss, primary patency, target lesion, revascularization (see also O6)

Important for decision making
O4 = Health related quality of life (HRQoL)
O5 = Walking distance (Wd), pain free
O6 = Reintervention (in the same vascular segment)
O7 = Rutherford score (Ruth), symptom severity (1-6)

Eligibility criteria

RCT ≥ 25 patients in each group
Non-randomized controlled studies ≥ 25 patients in each group
Case series >100 patients
Systematic reviews

Publication year:

2000-

Language:

Engelska, svenska, norska, danska
Selection process – flow diagram

Records identified through database searching (n = 1068)

Additional records identified through other sources (n = 51)

Records after duplicates removed (n = 965)

Records screened by HTA librarians (n = 965)

Records excluded by HTA-librarians. Did not fulfil PICO or other eligibility criteria (n = 871)

Full-text articles assessed for eligibility by HTA librarians (n = 94)

Full-text articles excluded by HTA librarians, with reasons (n = 28)
- 4 = wrong patient/population
- 4 = wrong intervention
- 19 = wrong study design
- 1 = other

Full-text articles assessed for eligibility by project group (n = 66)

Full-text articles excluded by project group, with reasons (n = 32)

See Appendix 3

Studies included in synthesis (n = 34)

See Appendix 2 and 4
Search strategies

Database: PubMed
Date: 2013-05-14
No of results: 309
Search updated: 2014-04-08 with 135 items found and 2014-11-19 with 119 items found

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#17</td>
<td>Search #16 NOT #6</td>
<td>309</td>
</tr>
<tr>
<td>#16</td>
<td>Search #15 NOT #7</td>
<td>326</td>
</tr>
<tr>
<td>#15</td>
<td>Search (#14) AND #2</td>
<td>393</td>
</tr>
<tr>
<td>#14</td>
<td>Search (#13) OR #1</td>
<td>51072</td>
</tr>
<tr>
<td>#2</td>
<td>Search iliac artery OR iliac arteries OR arteria iliaca OR iliacal arteries OR aortoiliac disease OR lower limb arterial disease OR femoropopliteal OR infrapopliteal OR crural OR "below the knee" OR peripheral arterial disease OR peripheral artery disease OR intermittent claudication OR critical limb ischemia OR critical limb ischaemia OR PAD OR chronic limb ischemia OR chronic limb ischaemia</td>
<td>108564</td>
</tr>
<tr>
<td>#1</td>
<td>Search (paclitaxel OR paclitaxel* OR everolimus OR everolimus* OR sirolimus OR sirolimus* OR drug-elut* OR drug-coat* OR drug-releas* OR drug-emitt*)</td>
<td>51072</td>
</tr>
<tr>
<td>#13</td>
<td>Search "Drug-Eluting Stents"[Mesh]</td>
<td>4830</td>
</tr>
<tr>
<td>#7</td>
<td>Search ((animals[mh]) NOT (animals[mh] AND humans[mh]))</td>
<td>3778933</td>
</tr>
<tr>
<td>#6</td>
<td>Search (Editorial[ptyp] OR Letter[ptyp] OR Comment[ptyp])</td>
<td>1236704</td>
</tr>
</tbody>
</table>

Database: Embase
Date: 2013-05-14
No of results: 275
Search updated: 2014-04-08 with 71 items found and 2014-11-19 with 49 items found

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(paclitaxel or everolimus or sirolimus or rapamycin or drug-elut$ or drug-coat$ or drug-releas$ or drug-emitt$).ti,ab,tn.</td>
<td>72716</td>
</tr>
<tr>
<td>2</td>
<td>exp drug eluting stent/ or exp paclitaxel/ or exp everolimus/ or exp rapamycin/</td>
<td>99968</td>
</tr>
<tr>
<td>3</td>
<td>1 or 2</td>
<td>125365</td>
</tr>
<tr>
<td>4</td>
<td>exp iliac artery/ or exp Leriche syndrome/ or exp intermittent claudication/ or exp peripheral occlusive artery disease/ or exp leg ischemia/ or exp popliteal artery/ or exp critical limb ischemia/</td>
<td>126626</td>
</tr>
<tr>
<td>5</td>
<td>(iliac artery or iliac arteries or arteria iliaca or iliacal arteries or aortoiliac disease or lower limb arterial disease or femoropopliteal or infrapopliteal or crural or "below the knee" or peripheral arterial disease or peripheral artery disease or intermittent claudication or critical limb ischemia or critical limb ischaemia or PAD or chronic limb ischemia or chronic limb ischaemia).ti,ab,tn.</td>
<td>48599</td>
</tr>
<tr>
<td>6</td>
<td>4 or 5</td>
<td>156336</td>
</tr>
<tr>
<td>7</td>
<td>3 and 6</td>
<td>4430</td>
</tr>
<tr>
<td>8</td>
<td>limit 7 to (embase and (danish or english or norwegian or swedish) and yr="2000 -Current" and (article or conference paper or "review")]</td>
<td>2718</td>
</tr>
<tr>
<td>9</td>
<td>limit 8 to exclude medline journals</td>
<td>275</td>
</tr>
</tbody>
</table>
A comprehensive review of reference lists brought 51 new records.
Reference lists

Included studies

Excluded

Other references

[Checklist from SBU regarding cohort studies]. [Internet]. [cited 2015 June 8]
Available from:
https://www2.sahlgrenska.se/upload/SU/HTA-centrum/Hj%e3%a4lpmedel%20under%20projektet/B03_Granskningsmall%20f%e3%b6r%20kohortstudier%20med%20kontrollgrupp%202014-10-29.doc

[Checklists from SBU regarding randomized controlled trials. [Internet]. [cited 2015 June 8]
Available from:
https://www2.sahlgrenska.se/upload/SU/HTA-centrum/Hj%e3%a4lpmedel%20under%20projektet/B02_Granskningsmall%20f%e3%b6r%20randomiserad%20kontrollerad%20pr%e3%b6vning%20RCT%202014-10-29.doc

Swedvasc. [Internet]. [cited 2015 June 8]. Available from: http://www.ucr.uu.se/swedvasc/

Project: Drug-eluting balloons and stents

Appendix 2: Included controlled studies (alphabetically) with study design and patient characteristics

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study design</th>
<th>Follow-up period (years)</th>
<th>Study Groups; Intervention vs control</th>
<th>Patients (n)</th>
<th>Mean Age (years)</th>
<th>Men/women</th>
<th>Outcome variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosiers, 2012</td>
<td>RCT P2</td>
<td>12 months</td>
<td>I: Drug-eluting stents Everolimus (Xience V) C: Bare metal stents (Multi-Link Vision)</td>
<td>140</td>
<td>75-76 (group means)</td>
<td>89/51</td>
<td>Mortality, Amputation, Lumen loss, Primary patency, TLR, Rutherford score</td>
</tr>
<tr>
<td>Dake, 2011a (Zilver PTX trial)</td>
<td>RCT P3</td>
<td>12 months</td>
<td>I: Drug-eluting stents Paclitaxel (Zilver PTX) C: Bare metal stents (Zilver)</td>
<td>474</td>
<td>67.7-67.9 (group means)</td>
<td>307/167</td>
<td>Mortality, Amputation, Primary patency, TLR, Rutherford score, Complications (adverse events)</td>
</tr>
<tr>
<td>Dake, 2013a (Zilver PTX trial)</td>
<td>RCT P3</td>
<td>24 months</td>
<td>I: Drug-eluting stents Paclitaxel (Zilver PTX) C: Bare metal stents (Zilver)</td>
<td>474</td>
<td>67.7-67.9 (group means)</td>
<td>307/167</td>
<td>Mortality, Amputation, Primary patency, TLR, Rutherford score, Complications (adverse events)</td>
</tr>
<tr>
<td>Duda, 2005 (SIROCCO II trial)</td>
<td>RCT P3</td>
<td>6 months</td>
<td>I: Drug-eluting stents Sirolimus (SMART) C: Bare metal stents (SMART)</td>
<td>57</td>
<td>66.1-67.2 (group means)</td>
<td>40/17</td>
<td>Mortality, Lumen loss, Primary patency, Rutherford score, Complications (adverse events)</td>
</tr>
</tbody>
</table>
Project: Drug-eluting balloons and stents

Appendix 2: Included controlled studies (alphabetically) with study design and patient characteristics

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study design</th>
<th>Follow-up period (years)</th>
<th>Study Groups; Intervention vs control</th>
<th>Patients (n)</th>
<th>Mean Age (years)</th>
<th>Men/women</th>
<th>Outcome variables</th>
</tr>
</thead>
</table>
| Duda, 2006 (SIROCCO I & II trials) | RCT P3 | 24 months | I: Drug-eluting stents Sirolimus (SMART)
C: Bare metal stents (SMART) | 93 | 66.3-65.9 (group means) | 67/26 | Mortality
Amputation
Primary patency
TLR
Rutherford score
Complications (adverse events) |
| Falkowski, 2009 | RCT P3 | 6 months | I: Drug-eluting stents Sirolimus (Cypher)
C: Bare metal stents (Sonic) | 50 | 68.3-70.5 (group means) | 29/21 | Mortality
Lumen loss
Primary patency
TLR
Rutherford score
Complications (adverse events) |
| Fanelli, 2012 (DEBELLUM trial) | RCT P3 | 6 months | I: Drug-eluting balloons Paclitaxel (IN.PACT Admiral or Amphirion)
C: Uncoated balloons (Admiral or Amphirion) | 50 | 66 | 37/13 | Mortality
Amputation
Lumen loss
TLR
Complications (adverse events) |
| Fanelli, 2014b (DEBELLUM trial) | RCT P3 | 12 months | I: Drug-eluting balloons Paclitaxel (IN.PACT Admiral or Amphirion)
C: Uncoated balloons (Admiral or Amphirion) | 50 | 67 | 37/13 | Mortality
Amputation
Lumen loss
Primary patency
TLR
Complications (adverse events) |
| Karnabatidis, 2011 | Cohort P2 | 36 months | I: Drug-eluting stents Everolimus (Xience V or Promus)
C: Bare metal stents | 81 | 71 | 63/18 | Mortality
Amputation
Lumen loss
Primary patency
TLR
Complications (adverse events) |
Project: Drug-eluting balloons and stents

Appendix 2: Included controlled studies (alphabetically) with study design and patient characteristics

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study design</th>
<th>Follow-up period (years)</th>
<th>Study Groups; Intervention vs control</th>
<th>Patients (n)</th>
<th>Mean Age (years)</th>
<th>Men/women</th>
<th>Outcome variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro, 2013b (DEBATE-BTK trial)</td>
<td>RCT P2</td>
<td>12 months</td>
<td>I: Drug-eluting balloons Paclitaxel (IN.PACT Amphirion) C: Uncoated balloons (Amphirion)</td>
<td>132</td>
<td>74-75 (group means)</td>
<td>106/26</td>
<td>Mortality Amputation Lumen loss Primary patency TLR Rutherford score Complications (adverse events)</td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>RCT P3</td>
<td>12 months</td>
<td>I: Drug-eluting stents Sirolimus (Yukon) C: Bare metal stents</td>
<td>161</td>
<td>72.9-73.4 (group means)</td>
<td>107/54</td>
<td>Mortality Amputation Primary patency TLR Rutherford score Complications (adverse events)</td>
</tr>
<tr>
<td>Rastan, 2012</td>
<td>RCT P3</td>
<td>1.016 days (mean period)</td>
<td>I: Drug-eluting stents Sirolimus (Yukon) C: Bare metal stents</td>
<td>161</td>
<td>72.9-73.4 (group means)</td>
<td>107/54</td>
<td>Mortality Amputation TLR Rutherford score</td>
</tr>
<tr>
<td>Scheinert, 2014 (Levant I trial)</td>
<td>RCT P3</td>
<td>24 months</td>
<td>I: Drug-eluting balloons Paclitaxel (Lutonix) C: Uncoated balloons</td>
<td>101</td>
<td>67-70 (group means)</td>
<td>64/37</td>
<td>Mortality Amputation Lumen loss Primary patency TLR Rutherford score Complications (adverse events)</td>
</tr>
<tr>
<td>Siablis, 2005</td>
<td>Cohort P2</td>
<td>6 months</td>
<td>I: Drug-eluting stents Sirolimus (Cypher) C: Bare metal stents (Evolution, Spiral Force, Tsunami, Zeus)</td>
<td>58</td>
<td>68.7-68.8 (group means)</td>
<td>42/16</td>
<td>Mortality Amputation Primary patency TLR Complications (adverse events)</td>
</tr>
</tbody>
</table>
Project: Drug-eluting balloons and stents
Appendix 2: Included controlled studies (alphabetically) with study design and patient characteristics

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study design</th>
<th>Follow-up period (years)</th>
<th>Study Groups; Intervention vs control</th>
<th>Patients (n)</th>
<th>Mean Age (years)</th>
<th>Men/women</th>
<th>Outcome variables</th>
</tr>
</thead>
</table>
| Siablis, 2007 | Cohort P2 | 12 months | I: Drug-eluting stents Sirolimus (Cypher)
C: Bare metal stents (Evolution, Spiral Force, Tsunami, Zeus) | 58 | 68.7-68.8 (group means) | 42/16 | Mortality
Amputation
Primary patency
TLR |
| Siablis, 2009 | Cohort P2 | 36 months | I: Drug-eluting stents Sirolimus (Cypher)
C: Bare metal stents (Evolution, Spiral Force, Tsunami, Zeus) | 103 | 69.0-71.6 (group means) | 81/22 | Mortality
Amputation
Primary patency
TLR
Complications (adverse events) |
| Tepe, 2008 (THUNDER study) | RCT P3 | 24 months | I: Drug-eluting balloons Paclitaxel (Lutonix)
C: Uncoated balloons | 102 | 68-69 (group means) | 65/37 | Mortality
Amputation
Lumen loss
Primary patency
TLR
Complications (adverse events) |
| Tepe, 2013 (THUNDER study Sub group analysis) | RCT P3 | 24 months | I: Drug-eluting balloons Paclitaxel (Lutonix)
C: Uncoated balloons | 86 | Not stated | 52/34 | Lumen loss
TLR |
| Werk, 2008 | RCT P3 | 18 months | I: Drug-eluting balloons Paclitaxel (Indena)
C: Uncoated balloons(Indena) | 87 | 67.3-70.2 (group means) | 52/35 | Mortality
Amputation
Lumen loss
TLR
Rutherford score
Complications (adverse events) |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study design</th>
<th>Follow-up period (years)</th>
<th>Study Groups; Intervention vs control</th>
<th>Patients (n)</th>
<th>Mean Age (years)</th>
<th>Men/women</th>
<th>Outcome variables</th>
</tr>
</thead>
</table>
| Werk, 2012 (PACIFIER trial) | RCT P3 | 12 months | **I**: Drug-eluting balloons Paclitaxel (IN.PACT Pacific)
C: Uncoated balloons (Pacific Extreme) | 85 | 71 | 50/35 | Mortality
Amputation
Lumen loss
TLR
Rutherford score
Complications (adverse events) |
| Zeller, 2014b (IN.PACT DEEP trial) | RCT P2 | 12 months | **I**: Drug-eluting balloons Paclitaxel (IN.PACT Amhirion)
C: Uncoated balloons | 358 | 71.7-73.3 (group means) | 266/92 | Mortality
Amputation
Lumen loss
TLR
Complications (adverse events) |
Appendix 3 Excluded articles

<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoniou, 2013</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Antoniou, 2014</td>
<td>Non-systematic review (incomplete)</td>
</tr>
<tr>
<td>Biondi-Zoccai, 2009</td>
<td>Old material</td>
</tr>
<tr>
<td>Biondi-Zoccai, 2013</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Bosiers, 2013b</td>
<td>Wrong interventions (not drug-eluting balloons or stents)</td>
</tr>
<tr>
<td>Canaud, 2014</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Cassese, 2012</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Chan, 2011</td>
<td>Non-systematic review</td>
</tr>
<tr>
<td>De Cock, 2013</td>
<td>Modelling study, budget impact</td>
</tr>
<tr>
<td>Diehm, 2013</td>
<td>Wrong outcome (costs)</td>
</tr>
<tr>
<td>Fanelli, 2014a</td>
<td>Non-systematic review</td>
</tr>
<tr>
<td>Fusaro, 2013a</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Fusaro, 2013b</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Geraghty, 2013</td>
<td>Wrong intervention</td>
</tr>
<tr>
<td>Jens, 2014a</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
</tbody>
</table>
Excluded articles

<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jens, 2014b</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Katsanos, 2013a</td>
<td>Non-systematic review, wrong outcome</td>
</tr>
<tr>
<td>Katsanos, 2013b</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Katsanos, 2014</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Kearns, 2013</td>
<td>Wrong outcome (cost effectiveness)</td>
</tr>
<tr>
<td>Kitrou, 2014</td>
<td>Cohort n<25/group</td>
</tr>
<tr>
<td>Lammer, 2013</td>
<td>Wrong intervention</td>
</tr>
<tr>
<td>Liistro, 2013a</td>
<td>Wrong comparison (balloon vs. stent)</td>
</tr>
<tr>
<td>Liistro, 2014</td>
<td>Wrong population (reinterventions)</td>
</tr>
<tr>
<td>Miki, 2014</td>
<td>Cohort n<25/group</td>
</tr>
<tr>
<td>Razavi, 2014</td>
<td>Earlier systematic review not used for data extraction</td>
</tr>
<tr>
<td>Saxon, 2013</td>
<td>Wrong intervention</td>
</tr>
<tr>
<td>Scheinert, 2006</td>
<td>Case-series n<100</td>
</tr>
<tr>
<td>Scheinert, 2012</td>
<td>Wrong comparison (stent vs. balloon)</td>
</tr>
<tr>
<td>Simpson, 2013</td>
<td>Wrong comparison (adjunct to PCA)</td>
</tr>
</tbody>
</table>
Project: Drug eluting balloons and stents in peripheral arterial disease

Appendix 3 Excluded articles

<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang, 2014</td>
<td>Drug eluting stents not separated</td>
</tr>
<tr>
<td>Zwischenberger, 2013</td>
<td>Non-systematic review</td>
</tr>
</tbody>
</table>
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Outcome variable: Mortality, restenosis, and Rutherford score (symptom severity), P1

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortality - Stent vs stent below the knee

Rastan 2011 | Germany | RCT | DES vs BMS | Sirolimus | BKn | I=40 | C=46 | Not stated* | Mortality: 5/40 (12.5%) n.s. | Mortality: 3/46 (6.5%) | *Regarding subgroup analysis for patients with intermittent claudication at baseline. |

Restenosis (late lumen loss, primary patency, target lesion revascularization) - Stent vs stent below the knee

Rastan 2011 | Germany | RCT | DES vs BMS | Sirolimus | BKn | I=40 | C=46 | Not stated* | PP: 85.3% p=0.006 TLR: 5.9% n.s. | PP: 55.0% TLR: 20% | *Regarding subgroup analysis for patients with intermittent claudication at baseline. |

Rutherford score (symptom severity) (Ruth) - Stent vs stent below the knee

Rastan 2011 | Germany | RCT | DES vs BMS | Sirolimus | BKn | I=40 | C=46 | Not stated* | Median ΔRuth: -1.5 (-3 to -1) p=0.01 | Median ΔRuth: -1 (-2 to 0) | *Regarding subgroup analysis for patients with intermittent claudication at baseline. |
Mortality - Stent vs stent below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Level</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Follow-up time</th>
<th>Result Intervention</th>
<th>Result Control</th>
<th>Comments</th>
<th>Directness</th>
<th>Study limitations</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosiers, 2012</td>
<td>Belgium</td>
<td>RCT</td>
<td>DES vs. BMS Everolimus</td>
<td>BKn</td>
<td>I=74 C=66 12 months</td>
<td>7</td>
<td>12 months survival: 81.9% n.s.</td>
<td>12 months survival: 84.2%</td>
<td>Xience V (everolimus) Destiny trial</td>
<td>? - +</td>
<td>Causes of death included: myocardial ischemia or heart failure (n=12), cerebrovascular accident (n=4), multiorgan system failure (n=2), renal insufficience (n=1), gastrointestinal bleeding (n=1), thoracic trauma (n=1), malignany (n=1), unrelated bleeding (n=1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs. BMS Sirolimus</td>
<td>BKn</td>
<td>I=42 C=33</td>
<td>Not stated *</td>
<td>12 months mortality: 9/42 (21.4%) n.s.</td>
<td>12 months mortality: 8/33 (24.3%)</td>
<td>* Regarding subgroup analysis for patients with intermittent cladication at baseline.</td>
<td>- ? ?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karnabatidis, 2011</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Everolimus</td>
<td>BKn</td>
<td>I=47 C=34</td>
<td>Not stated</td>
<td>12 months survival*: ≈ 95%</td>
<td>12 months survival*: ≈ 85%</td>
<td>*Estimated from figure.</td>
<td>Na Na Na</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 (9) Na = Cohort studies were not appraised for study quality
Outcome variable: Mortality, amputation, restenosis, and Rutherford score (symptom severity), P2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Siablis, 2007</td>
<td>Greece</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Siablis, 2009</td>
<td>Greece</td>
</tr>
</tbody>
</table>

* + No problem
? Some problems
- Major problems

Na = Cohort studies were not appraised for study quality
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease
Appendix 4.2
Outcome variable: Mortality, amputation, restenosis, and Rutherford score (symptom severity), P2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison Level</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Mortality - Balloon vs balloon below the knee

<table>
<thead>
<tr>
<th>Liistro, 2013b</th>
<th>Italy</th>
<th>RCT</th>
<th>DEB vs. PTA Paclitaxel</th>
<th>132</th>
<th>I=5</th>
<th>12 months mortality: 5/65 (7.7%) n.s.</th>
<th>12 months mortality: 3/67 (4.5%)</th>
<th>IN.PACT Amphiron, Medtronic vs. Amphrion Deep, Medtronic. Diabetics BTK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Causes of death included: sudden death (n=3), respiratory failure (n=1), stroke (n=1), heart failure (n=1), sepsis (n=1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ Discrepancy in data: more deaths reported in the Consort flowchart than for all-cause mortality at 12 months follow-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>† Calculated from reported data (Fisher's exact test) including all participants that were randomized.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeller, 2014b</th>
<th>Multicenter, Europe</th>
<th>RCT</th>
<th>DEB vs. PTA Paclitaxel</th>
<th>358</th>
<th>I=86</th>
<th>12 months mortality: 23/239 (9.6%) p=0.5626† Consort flowchart data, deaths until 12 months †: 44/239 (18.4%) p=0.4631†</th>
<th>12 months mortality: 9/119 (7.6%) Consort flowchart data, deaths until 12 months †: 18/119 (15.1%)</th>
<th>IN.PACT DEEP DEB arm, Amphiron, Medtronic vs Amphrion Deep, Medtronic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Discrepancy in data: more deaths reported in the Consort flowchart than for all-cause mortality at 12 months follow-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>† Calculated from reported data (Fisher's exact test) including all participants that were randomized.</td>
</tr>
</tbody>
</table>

Na = Cohort studies were not appraised for study quality
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4.2

Outcome variable: Mortality, amputation, restenosis, and Rutherford score (symptom severity), P2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Level</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Directness*</th>
<th>Study limitations*</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Amputation - Stent vs stent below the knee</td>
<td></td>
</tr>
<tr>
<td>Bosiers 2012</td>
<td>Belgium</td>
<td>RCT</td>
<td>DES vs. BMS Everolimus BKn</td>
<td>I=42</td>
<td>140</td>
<td>7</td>
<td>Amputations, 12 months: 1 n.s.</td>
<td>Amputations, 12 months: 2</td>
<td>Xience V (everolimus) Destiny trial</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs. BMS Sirolimus BKn</td>
<td>I=42</td>
<td>140</td>
<td>7</td>
<td>Amputations, 12 months: 1 n.s.</td>
<td>Amputations, 12 months: 2</td>
<td>Xience V (everolimus) Destiny trial</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Karnabatidis, 2011</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Everolimus BKn</td>
<td>I=42</td>
<td>140</td>
<td>7</td>
<td>Amputations, 12 months: 1 n.s.</td>
<td>Amputations, 12 months: 2</td>
<td>Xience V (everolimus) Destiny trial</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>

Na = Cohort studies were not appraised for study quality
Appendix 4.2

Outcome variable: Mortality, amputation, restenosis, and Rutherford score (symptom severity), P2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison Level</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness*</td>
</tr>
<tr>
<td>Siablis, 2007</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Sirolimus BKn</td>
<td>I=29 C=29</td>
<td>I=11 C=9</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limb salvage: 24/25 (96.0%) n.s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minor amputation: 3/29 (10.3%) n.s.</td>
<td></td>
</tr>
<tr>
<td>Siablis, 2009</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Sirolimus BKn</td>
<td>I=62 C=41</td>
<td>Not stated at 12 months</td>
<td>Limb salvage at 12 months: ≈92%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- * + No problem
- ? Some problems
- - Major problems

Na = Cohort studies were not appraised for study quality
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness</td>
</tr>
<tr>
<td>Liistro, 2013b</td>
<td>Italy</td>
<td>RCT</td>
<td>DEB vs. PTA Paclitaxel BKn</td>
<td>132</td>
<td>I=65 C=67 12 months</td>
<td>I=5 C=3</td>
<td>Amputations, 12 months: 0 (0%) n.s.</td>
</tr>
<tr>
<td>Zeller, 2014b</td>
<td>Multicenter, Europe</td>
<td>RCT</td>
<td>DEB vs. PTA Paclitaxel BKn</td>
<td>358</td>
<td>I=239 C=119 12 months</td>
<td>I=86 C=36</td>
<td>Amputations, 12 months: 20/227 (8.8%) p=0.080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* + No problem
? Some problems
- Major problems

6 (9) Na = Cohort studies were not appraised for study quality
Restenosis (late lumen loss, primary patency, target lesion revascularization) - Stent vs stent below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosiers, 2012</td>
<td>Belgium</td>
<td>RCT</td>
<td>DES vs. BMS Everolimus BKn</td>
<td>140</td>
<td>7</td>
<td>At 12 months: LLL: 21%, p<0.0001 PP: 85.2%, p=0.001 TLR: 8.7%, p=0.001</td>
<td>At 12 months: LLL: 47% PP: 54.4% TLR: 33.6%</td>
</tr>
<tr>
<td>Karnabatidis, 2011</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Everolimus BKn</td>
<td>I=47 C=34</td>
<td>Not stated</td>
<td>At 12 months: PP: ≈ 87%*</td>
<td>At 12 months: PP: ≈ 59%*</td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs. BMS Sirolimus BKn</td>
<td>I=42 C=33</td>
<td>Not stated*</td>
<td>At 12 months: PP: 75.0% n.s. TLR: 13.8% n.s.</td>
<td>At 12 months: PP: 56.5% TLR: 13.0%</td>
</tr>
</tbody>
</table>

* + No problem
? Some problems
- Major problems

Na = Cohort studies were not appraised for study quality
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease
Appendix 4.2
Outcome variable: Mortality, amputation, restenosis, and Rutherford score (symptom severity), P2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Directness*</th>
<th>Study limitations*</th>
<th>Precision*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siablis, 2007</td>
<td>Greece</td>
<td>Cohort</td>
<td>DES vs. BMS Sirolimus</td>
<td>I=29, C=29</td>
<td>I=11, C=9</td>
<td>12 months</td>
<td>PP: 86.4%, p<0.001, TLR: 9.1%, p=0.02</td>
<td>12 months</td>
<td>+</td>
<td>Na</td>
</tr>
<tr>
<td>Liistro 2013b</td>
<td>Italy</td>
<td>RCT</td>
<td>DEB vs. PTA Paclitaxel</td>
<td>132</td>
<td>I=65, C=67</td>
<td>12 months</td>
<td>BR: 27.0%, p<0.001, TLR*: 10%, p=0.02</td>
<td>At 12 months: BR: 74.3%, TLR: 20%</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zeller, 2014b</td>
<td>Multicenter, Europe</td>
<td>RCT</td>
<td>DEB vs. PTA Paclitaxel</td>
<td>358</td>
<td>I=239, C=119</td>
<td>12 months</td>
<td>BR: 41.0%, n.s., LLL: 0.605 (SD 0.775) n.s., TLR: 11.9% n.s.</td>
<td>At 12 months: BR: 35.5%, LLL: 0.616 (SD 0.781) TLR: 13.5%</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>

Restenosis (late lumen loss, primary patency, target lesion revascularization) - Balloon vs balloon below the knee

8 (9) Na = Cohort studies were not appraised for study quality
Rutherford score (symptom severity) - Stent vs stent below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosiers, 2012</td>
<td>Belgium</td>
<td>RCT</td>
<td>DES vs. BMS Everolimus BKn</td>
<td>140</td>
<td>7</td>
<td>ΔRuth*: 60%, p=0.68</td>
<td>ΔRuth*: 56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs. BMS Sirolimus BKn</td>
<td>I=42 C=33</td>
<td>Not stated*</td>
<td>ΔRuth: -3 (-2 to -4) n.s.</td>
<td>ΔRuth: -2 (0 to -3)</td>
</tr>
</tbody>
</table>

Rutherford score (symptom severity) - Balloon vs balloon below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liistro 2013b</td>
<td>Italy</td>
<td>RCT</td>
<td>DEB vs. PTA Paclitaxel BKn</td>
<td>132 I=5 C=3</td>
<td></td>
<td>Ruth at baseline: 5.2 (SD 0.4)</td>
<td>Ruth at baseline: 5.1 (SD 0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* + No problem
? Some problems
- Major problems

Na = Cohort studies were not appraised for study quality
Mortality - Stent vs stent above the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dake, 2011a</td>
<td>Multicenter, Multinational</td>
<td>RCT</td>
<td>DES vs BMS Paclitaxel</td>
<td>I=241 C=238</td>
<td>I=6* C=2*</td>
<td>12 months: 9 (3.7%) deaths n.s. Event-free survival 12 months: 90.4 % p=0.004</td>
<td>Zilver PTX trial Causes of death included e.g.: malignancy, pulmonary disease, congestive heart failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AKn</td>
<td>I=82 C=79</td>
<td>I=20 C=16</td>
<td>12 months: 14 (17.1%) deaths n.s.</td>
<td>Causes of death: major cardiac event (n=8), gastrointestinal and pulmonary infection (n=5), lung-cancer (n=1), uncertain cause of death (n=11).</td>
</tr>
</tbody>
</table>

Mortality - Stent vs stent below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs BMS Sirolimus</td>
<td>I=82 C=79</td>
<td>I=20 C=16</td>
<td>12 months: 14 (17.1%) deaths n.s.</td>
<td>Causes of death: major cardiac event (n=8), gastrointestinal and pulmonary infection (n=5), lung-cancer (n=1), uncertain cause of death (n=11).</td>
</tr>
</tbody>
</table>
Mortality - Balloon vs balloon above and below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Directness*</th>
<th>Study limitations *</th>
<th>Precision *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanelli, 2014b</td>
<td>Italy</td>
<td>RCT</td>
<td>DEB vs UCB Paclitaxel AKn & BKn</td>
<td>I=25 C=25</td>
<td>I=0 C=0</td>
<td>12 months: 0 deaths</td>
<td>12 months: 0 deaths</td>
<td>DEBEILLUM trial</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Scheinert, 2014</td>
<td>Belgium, Germany, USA</td>
<td>RCT</td>
<td>DEB vs UCB Paclitaxel AKn & BKn</td>
<td>I=49 C=52</td>
<td>I=4 C=11</td>
<td>12 months: 2 (4.1%) deaths n.s.*</td>
<td>12 months: 4 (7.7%) deaths</td>
<td>Levant I trial</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Werk, 2012</td>
<td>Germany</td>
<td>RCT</td>
<td>DEB vs UCB Paclitaxel AKn & BKn</td>
<td>I=41 C=44</td>
<td>I=2 C=4</td>
<td>12 months: 0 (0.0%) deaths n.s.*</td>
<td>12 months: 3 (7.5%) deaths</td>
<td>PACIFIER trial</td>
<td>-</td>
<td>?</td>
</tr>
</tbody>
</table>
Outcome variable: 12 months, amputation, P3

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Level</th>
<th>Number of patients n=</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amputation - Stent vs stent above the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dake, 2011a</td>
<td>Multicenter, Multinational</td>
<td>RCT</td>
<td>DES vs BMS Paclitaxel AKn</td>
<td>I=241 C=238</td>
<td>I=6^ C=2^</td>
<td>Amputation 12 months: 1 (0.5%) n.s.</td>
<td>Amputation 12 months: 0 (0.0%)</td>
<td>Zilver PTX trial Amputation reported as an adverse event.</td>
</tr>
<tr>
<td>Amputation - Stent vs stent below the knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs BMS Sirolimus BKn</td>
<td>I=82 C=79</td>
<td>I=20 C=16</td>
<td>Amputation 12 months: 2 (3.2%) Minor amputation (n=1), Major amputation (n=1) n.s.</td>
<td>Amputation 12 months: 4 (6.4%) Minor amputation (n=2), Major amputation (n=2)</td>
<td>Amputation reported as an adverse event.</td>
</tr>
</tbody>
</table>
Amputation - Balloon vs balloon above and below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison Level</th>
<th>Number of patients $n=$</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Directness*</th>
<th>Study limitations *</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanelli, 2014b</td>
<td>Italy</td>
<td>RCT</td>
<td>DEB vs UCB</td>
<td>I=25 C=25</td>
<td>I=0 C=0</td>
<td>Amputation 12 months: 1 (4.0%) n.s.</td>
<td>DEBELLM trial</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel AKn & BKn</td>
<td></td>
<td></td>
<td>Amputation 12 months: 3 (12.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheinert, 2014</td>
<td>Belgium, Germany, USA</td>
<td>RCT</td>
<td>DEB vs UCB</td>
<td>I=49 C=52</td>
<td>I=4 C=11</td>
<td>Amputation 12 months: 1 (2.0%) n.s.</td>
<td>Levant I trial</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel AKn & BKn</td>
<td></td>
<td></td>
<td>Amputation 12 months: 0 (0.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*$p=0.4851$ (Fisher’s test) calculated from reported data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werk, 2012</td>
<td>Germany</td>
<td>RCT</td>
<td>DEB vs UCB</td>
<td>I=41 C=44</td>
<td>I=2 C=4</td>
<td>Amputation 12 months: 0 (0.0%) n.s.</td>
<td>PACIFIER trial</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel AKn & BKn</td>
<td></td>
<td></td>
<td>Amputation 12 months: 0 (0.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amputation reported as an adverse event.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, year</td>
<td>Country</td>
<td>Study design</td>
<td>Comparison</td>
<td>Number of patients n=</td>
<td>Withdrawals - dropouts</td>
<td>Result</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness*</td>
<td>Study limitations*</td>
<td>Precision*</td>
<td></td>
</tr>
<tr>
<td>Dake, 2011a</td>
<td>Multicenter, Multinational</td>
<td>RCT</td>
<td>DES vs BMS Paclitaxel</td>
<td>I=241</td>
<td>I=6*</td>
<td>12 months: PP: 83.1%, p<0.001 TLR: 9.5%, p=0.01</td>
<td>12 months: PP: 32.8% TLR: 17.5%</td>
<td>Zilver PTX trial^</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Rastan, 2011</td>
<td>Germany</td>
<td>RCT</td>
<td>DES vs BMS Sirolimus</td>
<td>I=82</td>
<td>I=20</td>
<td>12 months: PP: 80.6%, p=0.004 TLR: 9.7% n.s.</td>
<td>12 months: PP: 55.6%</td>
<td>-</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Restenosis - Balloon vs balloon above and below the knee

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result Intervention</th>
<th>Result Control</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Fanelli, 2014b | Italy | RCT | DEB vs UCB Paclitaxel AKn & BKn | I=25
C=25 | I=0
C=0 | 12 months:
LLL: 0.64 (SD 0.9) mm
p=0.01
PP:76.0%, p=0.04
TLR: 12.2%, p<0.05 | 12 months:
LLL: 1.81 (SD 0.1) mm
PP:39.6%
TLR: 35.3% | DEBELLOM trial |
| Scheinert, 2014 | Belgium, Germany, USA | RCT | DEB vs UCB Paclitaxel AKn & BKn | I=49
C=52 | I=4
C=11 | 12 months:
PP: 67%, n.s.
TLR: 29%, n.s. | 12 months:
PP: 55%
TLR: 33% | Levant I trial
* Calculated from reported data (Fisher’s test). |
| Tepe, 2008 | Germany | RCT | DEB vs UCB Paclitaxel AKn & BKn | I=48*
C= 54* | I=2*
C=1* | 12 months:
TLR: 10%
n.s. | 12 months:
TLR: 48% | THUNDER study
* Withdrawals and dropouts at 6 months (not stated at 12 months) |
| Werk, 2012 | Germany | RCT | DEB vs UCB Paclitaxel AKn & BKn | I=41
C=44 | I=2
C=4 | 12 months:
TLR: 7.7%
p=0.02 | 12 months:
TLR: 25% | PACIFIER trial |
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-5

Outcome variable: 12 months, Restenosis and Rutherford score (symptom severity), P3

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Comparison</th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Directness*</th>
<th>Study limitations*</th>
<th>Precision*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intervention</td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Rutherford score (symptom severity) - Stent vs stent above the knee

- **Dake, 2011a**
 - Multicenter, Multinational
 - RCT
 - DES vs BMS Paclitaxel
 - AKn
 - I=241, C=238
 - ΔRuth improvement from baseline: ΔRuth improvement from baseline
 - p<0.001, within group
 - p<0.001, within group
 - Zilver PTX trial
 - Numbers calculated from data at randomization and at zero months post procedure

Rutherford score (symptom severity) - Stent vs stent below the knee

- **Rastan, 2011**
 - Germany
 - RCT
 - DES vs BMS Sirolimus
 - BKn
 - I=82, C=79
 - ΔRuth from baseline:
 - p=0.004
 - ΔRuth from baseline:
 - -2 (-3 to -1)
 - p=0.004

Rutherford score (symptom severity) - Balloon vs balloon above and below the knee

- **Scheinert, 2014**
 - Belgium, Germany, USA
 - RCT
 - DEB vs UCB Paclitaxel
 - AKn & BKn
 - I=49, C=52
 - ΔRuth from baseline:
 - p not stated
 - ΔRuth from baseline:
 - 1.6 (SD 1.3)
 - 2.1 (SD 1.3)
 - Levant I trial
 - Numbers calculated from data at randomization and at zero months post procedure

* + No problem
? Some problems
- Major problems
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>PICO 1-3</th>
<th>Number of patients</th>
<th>With drawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level</td>
<td>Drug coating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balzer, 2010</td>
<td>Germany</td>
<td>Case series, prospective</td>
<td>P2</td>
<td>DES Bkn</td>
<td>Sirolimus</td>
<td>NA</td>
<td>Minor complications in 8.8% of the patients* No major complications</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosiers, 2012</td>
<td>Belgium</td>
<td>RCT</td>
<td>P2</td>
<td>DES/BM Bkn</td>
<td>Everolimus</td>
<td>NA</td>
<td>No technical complications or early failures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>7</td>
<td></td>
<td>No technical complications or early failures</td>
</tr>
<tr>
<td>Bosiers, 2013a</td>
<td>Multicentre International</td>
<td>Case-series</td>
<td>P3</td>
<td>DES Akn</td>
<td>Paclitaxel</td>
<td>NA</td>
<td>Procedure related deaths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>787</td>
<td>12 months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Procedure related deaths

DES infrapop critical ischemia
Cypher stents (Sirolimus)
Dissection (n=3), embolization (n=4), hematoma (n=3)
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Drug coating</th>
<th>Number of patients</th>
<th>Number of withdrawals</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dake, 2011a (Zilver PTX trial)</td>
<td>Multicentre International</td>
<td>RCT</td>
<td>DES/BM Akn Paclitaxel</td>
<td>479</td>
<td>1=6* C=2*</td>
<td>Major adverse events at 12 months: Clinically driven TLRs: 21 (9.5%) p=0.01 Worsening of Δ Ruth*: 0 (0.0%) Stent fracture rate: 12 months: 0.9%</td>
<td>Major adverse events at 12 months: Clinically driven TLRs: 39 (17.5%) Worsening of Δ Ruth*: 2 (0.9%) Stent fracture rate: 12 months: 0.9%</td>
</tr>
<tr>
<td>Dake, 2011b</td>
<td>USA</td>
<td>Single arm, prospective multicentre</td>
<td>DES/BM Akn Paclitaxel</td>
<td>787</td>
<td>9</td>
<td>Major adverse events at 12 months: 4 procedure related deaths 9.5% clinically driven TLR 5 Ruth worsening to class 5 Other adverse events: 3 hematoma 25 cardiac ischemia 3 myocardial infarction* 3 stroke 4 reaction to contrast 2 renal failure† 2 pulmonary edema 2 pulmonary embolism Stent fractures at 12 months: 1.5%</td>
<td>NA</td>
</tr>
</tbody>
</table>
Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients</th>
<th>With withdrawals</th>
<th>Intervention</th>
<th>Control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dake, 2013a (Zilver PTX trial)</td>
<td>Multicentre International</td>
<td>RCT P3 DES/BM Akn Paclitaxel</td>
<td>24 months</td>
<td>No device related deaths</td>
<td>No device related deaths</td>
<td>Other adverse events reported as all-cause death or TLR, or not detailed per study group. See Dake 2011a and 2011b.</td>
<td></td>
</tr>
<tr>
<td>Duda, 2005 (SIROCCO II trial)</td>
<td>Multicentre International</td>
<td>RCT P3 DES/BM Akn Sirolimus</td>
<td>57</td>
<td>2</td>
<td>Serious adverse events at 6 months: 33 (44.8%)</td>
<td>Serious adverse events at 6 months: 13(46.4%)</td>
<td>*Probably procedure related† Contralateral leg before discharge TVR=Target vessel revascularization CABG=Coronary artery bypass grafting‡ Contralateral leg after discharge</td>
</tr>
</tbody>
</table>

- 1 stent thrombosis
- 1 Pseudoaneurysm
- 2 Revascularization
- 2 Death
- 1 TVR
- 1 Atypical chest pain
- 1 Spinal cord stenosis
- 1 Severe internal bleeding
- 3 Revascularization
- 1 stent thrombosis
- 1 bleeding
- 2 Revascularization
- 1 Death
- 3 TVR
- 1 Hematoma at puncture site
- 1 Hospitalization for CABG
- 1 Suspected coronary disease
- 2 Revascularization
- * Probably procedure related
- † Contralateral leg before discharge
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>PICO 1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level</td>
<td>Drug coating</td>
</tr>
<tr>
<td>Duda, 2006 (SIROCCO I & II trials)</td>
<td>Multicentre International</td>
<td>RCT</td>
<td>P3 DES/BM Akn Sirolimus</td>
</tr>
<tr>
<td>Falkowski, 2009</td>
<td>Poland</td>
<td>RCT</td>
<td>P3 DES/BM Bkn Sirolimus</td>
</tr>
<tr>
<td>Fanelli, 2012 (DEBELLUM trial)</td>
<td>Italy</td>
<td>RCT</td>
<td>P3 DEB/UCB Akn/Bkn Paclitaxel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>n=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duda, 2006</td>
<td>93</td>
<td>24 months</td>
<td>21*</td>
<td>Adverse event rates at 24 months: Death 7 (15%) TLR 3 (6%) Total occlusion 0 (0%) No amputations as complication Stent fractures at 24 months 10/25 (40%)</td>
</tr>
<tr>
<td>Falkowski, 2009</td>
<td>50</td>
<td>6 months</td>
<td>0</td>
<td>Serious complications: 1 large hematoma of the common femoral artery Minor complications: 2 insignificant hematomas</td>
</tr>
<tr>
<td>Fanelli, 2012</td>
<td>54*</td>
<td>6 months</td>
<td>4*</td>
<td>Adverse events at 6 months: No deaths 1 major amputation 1 thrombosis at 48 h post procedure</td>
</tr>
<tr>
<td>Author, year</td>
<td>Country</td>
<td>Study design</td>
<td>Number of patients n=</td>
<td>Withdrawals - dropouts</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PICO 1-3</td>
<td>Follow-up n=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanelli, 2013</td>
<td>Italy</td>
<td>Case-Series</td>
<td>787</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3 DES AKn Paclitaxel</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetic: Major adverse events:</td>
<td>29/285</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>89.7% clinically driven TLR</td>
<td>3 died within 30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 cardiac ischemia</td>
<td>1 MI, 1 renal fail)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-diabetic: Major adverse events:</td>
<td>60/502</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.0% clinically driven TLR</td>
<td>1 died within 30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(pulmonary embolism)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanelli, 2014b</td>
<td>Italy</td>
<td>RCT</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>(DEBELLUM trial)</td>
<td></td>
<td>P3 DEB/UCB AKn/Bkn Paclitaxel</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major adverse events:</td>
<td>6/25 (24%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major adverse events:</td>
<td>15/25 (60%)</td>
<td></td>
</tr>
<tr>
<td>Feiring, 2010</td>
<td>USA</td>
<td>Case series, prospective</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>(PaRADISE trial)</td>
<td></td>
<td>P2 DES Bkn Sirolimus or Paclitaxel</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major adverse events:</td>
<td>1 procedure related amputation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Major adverse events during the first year, none thereafter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 contrast nefropathies</td>
<td>(0 dialysis)</td>
<td></td>
</tr>
</tbody>
</table>
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Drug coating</th>
<th>Number of patients</th>
<th>Withdrawals</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnabatidis, 2011</td>
<td>Greece</td>
<td>Cohort (historical controls)</td>
<td>DES/BM Bkn</td>
<td>87</td>
<td>Not stated</td>
<td>Major adverse events: 0 within 30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2 Everolimus</td>
<td>36 months</td>
<td></td>
<td></td>
<td>Major adverse events: 0 within 30 days</td>
<td></td>
</tr>
</tbody>
</table>
| Lammer, 2011 (STRIDES trial) | Multicenter Europe | Case series, prospective | DES Akn/Bkn | 104 | 1* | Major adverse events: 2 major amputations 1 access site hematoma 2 access site pseudoaneurysm 3 non access site bleeding 14 cardiac 11 pulmonary 1 stroke 6 carcinoma 3 gastrointestinal 4 infectious 4 miscellaneous No stent fractures at 12 months | NA 99% follow-up at 12 months.
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Study design</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PICO 1-3</td>
<td>n= Follow-up n=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drug coating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT</td>
<td>P2</td>
<td>132 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEB/UCB</td>
<td>12 months 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bkn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel</td>
<td></td>
</tr>
<tr>
<td>Liistro, 2013b</td>
<td>Italy</td>
<td>RCT</td>
<td>P2</td>
<td>132 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEB/UCB</td>
<td>12 months 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bkn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel</td>
<td></td>
</tr>
<tr>
<td>Micari, 2012</td>
<td>Italy</td>
<td>Case series</td>
<td>P3</td>
<td>105 13</td>
</tr>
<tr>
<td></td>
<td>Multicenter</td>
<td>Registry</td>
<td>DEB</td>
<td>12 months 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A kn/Bkn</td>
<td>Paclitaxel</td>
<td></td>
</tr>
<tr>
<td>Micari, 2013</td>
<td>Italy</td>
<td>Case series</td>
<td>P3</td>
<td>105 7</td>
</tr>
<tr>
<td></td>
<td>Multicenter</td>
<td>Registry</td>
<td>DEB</td>
<td>27 months 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A kn/Bkn</td>
<td>Paclitaxel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major adverse events at 12 months*: 20 (31%) p=0.02</td>
<td>Major adverse events at 12 months*: 34 (51%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Included deaths, major amputation, TLR, or Rutherford class 4 or greater).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN.PACT Amphiron, Medtronic vs Amphrion Deep, Medtronic 1 year follow-up Diabetics BTK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN.PACT Admiral (paclitaxel)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Major adverse events at 27 months: 17 (17.5%) with 2 (2.2%) deaths 1 (1.0%) amputation 14 (14.3%) TLR</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>IN.PACT Admiral (paclitaxel)</td>
</tr>
</tbody>
</table>
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Follow-up n=</th>
<th>With dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Rastan, 2010 | Germany | Case series, prospective P1, P2, P3 DES Bkn Sirolimus | 146 | 12 months | 42* | No major complications at 12 months | 10 (7%) minor complications at 12 months: 6 (4%) groin hematomas 4 (3%) pseudoaneurysms | NA | Sirolimus eluting stents
27 died and 15 lost to follow-up |
| Rastan, 2011 | Germany | RCT P1, P2, P3 DES/BM Bkn Sirolimus | 161 | 12 months | 36 | 22 (27.1%) adverse events at 12 months: 14 (17.1%) deaths n.s. 2 (3.3%) amputations* (one major, one minor) n.s. | 29 (36.7%) adverse events at 12 months: 11 (13.9%) deaths 3 (6.4%) amputations* (two major, one minor) 3 myocardial infarctions | * Due to insufficiently controlled wound infection. |
| Rastan, 2012 | Germany | RCT P3 DES/BM Bkn Sirolimus | 161 | 1,016 days (mean period) | 45 | Adverse events In comparison to DES, BMS placement associated with HR: 1.8 (CI95%: 1.1 to 2.9) p=0.02 Adjusted HR*: 1.7 (CI95%: 1.1 to 2.8) p=0.03 | See intervention | * Adjusted for renal insufficiency, critical limb ischemia, and body mass index |
Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Drug coating</th>
<th>Number of patients</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheinert 2014</td>
<td>International Multicenter</td>
<td>RCT P3 DEB/UCB Akn/Bkn Paclitaxel</td>
<td>101 24 months</td>
<td>15</td>
<td>Composite major adverse event rate: 14/49 (39%) n.s. TLR: 15/42 (36%) n.s. Amputation: 1/42 (2%) n.s. Death: 4/42 (9%) n.s. Thrombosis: 0/42 (0%) n.s.</td>
<td>Composite major adverse event rate: 24/52 (46%) TLR=n=20/41 (49%) Amputation: 0/41 (0%) Death: 5/41 (11) n.s. Thrombosis: 1/42 (2%)</td>
</tr>
<tr>
<td>Schmidt, 2011</td>
<td>Australia</td>
<td>Case series, prospective P3 DEB Bkn Paclitaxel</td>
<td>104 12 months</td>
<td>18</td>
<td>Periprocedural complications: 1 death (as result of major amputation) 3 femoral pseudoaneurysms 16 additional deaths at 12 months*</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Died subsequently
* Causes of death: 7 cardiac disease, 1 cancer (diagnosed before intervention), 8 unrelated.
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>PICO 1-3</th>
<th>Drug coating</th>
<th>Number of patients</th>
<th>Follow-up</th>
<th>Withdrawals - dropouts</th>
<th>Result Intervention</th>
<th>Result Control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siablis, 2005</td>
<td>Greece</td>
<td>Cohort</td>
<td>P2 DES/BM Bkn Sirolimus</td>
<td>58</td>
<td>6 months</td>
<td>5</td>
<td>Major adverse events at 6 months: 1 periprocedural myocardial infarction*</td>
<td>Major adverse events at 6 months: None</td>
<td>Sirolimus DES vs. BMS</td>
<td>Died during 6-month follow-up</td>
</tr>
<tr>
<td>Siablis, 2007</td>
<td>Greece</td>
<td>Cohort</td>
<td>P2 DES/BM Bkn Sirolimus</td>
<td>58</td>
<td>12 months</td>
<td>7</td>
<td>Not explicitly reported</td>
<td>Not explicitly reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siablis, 2009</td>
<td>Greece</td>
<td>Cohort</td>
<td>P2 DES/BM Bkn Sirolimus</td>
<td>103</td>
<td>1 to 36 months</td>
<td>Not stated</td>
<td>Major complications: 1 retroperitoneal hemorrhage</td>
<td>Major complications: 1 retroperitoneal hemorrhage</td>
<td>* Died during the first 6-months</td>
<td></td>
</tr>
</tbody>
</table>
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Drug coating</th>
<th>Number of patients</th>
<th>With withdrawals</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PICO 1-3</td>
<td></td>
<td>Follow-up n=</td>
<td>n=</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level</td>
<td>Number of patients</td>
<td>Follow-up n=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug coating</td>
<td>Number of patients</td>
<td>Follow-up n=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=</td>
<td>follow-up n=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dropouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Tepe, 2008 (THUNDER study) | Germany Multicenter | RCT | DEB/UCB Akn/Bkn Paclitaxel | 102 | 3 | Serious adverse events during intervention 3/48 (6%): 1 toe amputation 1 abrupt total occlusion 1 cerebellar infarction n.s. | Serious adverse events during intervention 2/54 (4%): 1 left ventricular failure 1 peripheral-artery occlusion
Serious adverse events 2 weeks to 6 months after intervention: 22/48 (46%) n.s. |
| Werk, 2008 | Germany | RCT | DEB/UCB Akn/Bkn Paclitaxel | 87 | 60 | Adverse events (during and shortly after the intervention): 1 peripheral embolism 1 skin rash
Serious adverse events: 22 (48.9%)† 1 unrelated death (multiple organ failure) | Adverse events (during and shortly after the intervention): 1 allegoid reaction 1 temp. s-creatinine increase
Serious adverse events: 22 (52.4%)† 1 bilateral below-knee amputation | *According to flow diagram †Most due to vascular disorders including TLR. |
| Werk, 2012 (PACIFIER trial) | Germany | RCT | DEB/UCB Akn/Bkn Paclitaxel | 85 | 5 | Major adverse events* at 12 months: 3/42 (7.1%) p=0.003 | Major adverse events* at 12 months: 1543 (34.9%) | Death, amputation, TLR |
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease
Appendix 4-6
Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>PICO 1-3</th>
<th>Number of patients</th>
<th>Follow-up</th>
<th>With withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werner, 2012</td>
<td>Germany</td>
<td>Case-series, Retrospective</td>
<td>P2</td>
<td>DES</td>
<td>Bkn</td>
<td>Sirolimus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n=158</td>
<td>31 months</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>Infrapopliteal serolimus stenting Cypher select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeller 2013</td>
<td>Germany</td>
<td>Case-series, Retrospective</td>
<td>P3</td>
<td>DEB</td>
<td>Akn</td>
<td>Paclitaxel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n=108</td>
<td>2 years</td>
<td>Subgroup analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>Case-series including the patients with in-stent restenosis in the Zilver-PTX study</td>
</tr>
<tr>
<td>Author, year</td>
<td>Country</td>
<td>Study design</td>
<td>Number of patients</td>
<td>Withdrawals - dropouts</td>
<td>Result</td>
<td>Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeller, 2014b (IN.PACT DEEP trial)</td>
<td>Germany</td>
<td>RCT P2 DEB/UCB Bkn Paclitaxel</td>
<td>358 12 months</td>
<td>122</td>
<td>Adverse events: 12 months mortality: 23/239 (9.6%) n.s. Consort flowchart data, deaths until 12 months †: 44/239 (18.4%) n.s. Amputations, 12 months: 20/227 (8.8%) p=0.080 Consort flowchart data, major amputations until 12 months †: 37/239 (15.4%) p=0.0181</td>
<td>Adverse events: 12 months mortality: 9/119 (7.6%) Consort flowchart data, deaths until 12 months †: 18/119 (15.1%) Amputations, 12 months: 4/111 (3.6%) Consort flowchart data, major amputations until 12 months †: 8/119 (6.7%)</td>
<td>IN.PACT DEEP DEB arm, Amphiron, Medtronic vs Amphirion Deep, Medtronic * Discrepancy in data: more deaths reported in the Consort flowchart than for all-cause mortality at 12 months follow-up † Calculated from reported data (Fisher's test)</td>
<td></td>
</tr>
</tbody>
</table>
Project: Drug-eluting vs. conventional endovascular treatment in infrainguinal peripheral arterial disease

Appendix 4-6

Outcome variable: Complications

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Drug coating</th>
<th>Number of patients ($n=\ \ \ \ \ 228$)</th>
<th>Follow-up ($n=\ \ \ \ \ 12$ months)</th>
<th>Withdrawals</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeller 2014a</td>
<td>Germany</td>
<td>Case-series</td>
<td>P2 DES DEB</td>
<td>40</td>
<td>Major adverse events at 12 months:</td>
<td>NA</td>
<td>Two cohorts DCB and DEB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BKn Paclitaxel</td>
<td></td>
<td>Deaths DEB 4/109 (3.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deaths DES 2/79 (2.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLR DEB 21 (19.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLR DES 17 (21.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No procedure related deaths in either cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Health technology assessment (HTA) is the systematic evaluation of properties, effects, and/or impacts of health care technologies, i.e. interventions that may be used to promote health, to prevent, diagnose or treat disease or for rehabilitation or long-term care. It may address the direct, intended consequences of technologies as well as their indirect, unintended consequences. Its main purpose is to inform technology-related policymaking in health care.

To evaluate the quality of evidence the Centre of Health Technology Assessment in Region Västra Götaland is currently using the GRADE system, which has been developed by a widely representative group of international guideline developers. According to GRADE the level of evidence is graded in four categories:

- High quality of evidence = (GRADE@@@@)
- Moderate quality of evidence = (GRADE@@@O)
- Low quality of evidence = (GRADE@@OO)
- Very low quality of evidence = (GRADE@OOO)

In GRADE there is also a system to rate the strength of recommendation of a technology as either “strong” or “weak”. This is presently not used by the Centre of Health Technology Assessment in Region Västra Götaland. However, the assessments still offer some guidance to decision makers in the health care system. If the level of evidence of a positive effect of a technology is of high or moderate quality it most probably qualifies to be used in routine medical care. If the level of evidence is of low quality the use of the technology may be motivated provided there is an acceptable balance between benefits and risks, cost-effectiveness and ethical considerations. Promising technologies, but a very low quality of evidence, motivate further research but should not be used in everyday routine clinical work.

Christina Bergh, Professor, MD.
Head of HTA-centrum
From operations or activity/management:

Question

Clinic-based HTA

Main process

Support process
- Training
- Search, sort, and select process
- Advice, help, assistance
- Feedback

Quality assurance process

Formally designated group for quality assurance

External review

Summarized assessment

Quality assured decision rationale