Bone anchored hearing aid and contralateral routing of signals in patients with unilateral hearing loss
[Benförankrad hörapparat]

Stalfors J, Jönsson R, Zeitooni M, Bergh C, Daxberg E-L, Franzén T, Samuelsson O.
Bone anchored hearing aid and contralateral routing of signals in patients with unilateral hearing loss

[Benförankrad hörapparat]

Joacim Stalfors¹*, Radoslava Jönsson¹, Mehrnaz Zeitooni², Christina Bergh³, Eva-Lotte Daxberg⁴, Thomas Franzén⁵, Ola Samuelsson³

¹ Department of Otorhinolaryngology, Sahlgrenska University Hospital
² Hearing & Deafness organisation, Habilitation & Health, Southern Älvsborgs Hospital, Borås, Sweden
³ HTA-centre of Region Västra Götaland, Sweden
⁴ Medical Library, Sahlgrenska University Hospital, Göteborg, Sweden
⁵ Head of the Medical Libraries, Sahlgrenska University Hospital, Göteborg, Sweden

*Corresponding author

Published December 2011
2011:42
Bone anchored hearing aid in patients with unilateral hearing loss [Benförankrad hörapparat]
Table of content

Summary of the Health Technology Assessment ... 4
Which health technology or method will be assessed? .. 6
Disease/disorder of Interest and Present Treatment.. 6
Present Health Technology ... 10
Review of the Level of Evidence ... 12
Ethical aspects .. 14
Organisation ... 15
Economy .. 16
Unanswered Questions ... 18

Statement from HTA-centrum 2011-10-26

Appendix 1 Outcome tables
Appendix 2 Excluded articles
Appendix 3 Search strategy, study selection and references
Appendix 4 Summary of findings – table
Appendix 5 Figure1. The normal pathway

HTA-centrum
Summary of the Health Technology Assessment

Method and patient group

Profound unilateral hearing loss is a permanent sensorineural hearing deficit in one ear. It is caused by dysfunction of the cochlea or auditory nerve, and can be of congenital or acquired origin. The patients experience impaired ability in speech recognition and sound localisation, thus affecting communication and quality of life. Current rehabilitation is the hearing aid solution, contralateral routing of signals from the deaf side to the normal hearing ear (CROS). In recent years, the bone anchored hearing aid (BAHA) has been advocated as an advantageous alternative.

Question at issue

Is bone anchored hearing aid system better than contralateral routing of signals or no hearing device in patients with profound unilateral hearing loss with regard to speech recognition, hearing threshold, sound localization, and quality of life?

PICO

P = Adults and children with unilateral deafness (or hearing loss) and normal hearing on the other side

I1 = BAHA
C1 = CROS (Contralateral routing of signals)

I2 = BAHA
C2 = No hearing device

I3 = CROS
C3 = No hearing device

O = Speech recognition, Hearing threshold, Sound localization, Quality of Life

Studied risks and benefits for patients of the new health technology

The systematic literature search identified one randomized controlled trial (RCT) and two cohort studies evaluating speech recognition and sound localisation ability with BAHA and CROS. The studies did not show any outcome differences between BAHA, CROS or no treatment in terms of speech recognition or sound localisation. The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcomes speech recognition and sound localisation is very low (GRADE ⊔). Four studies evaluated the subjective benefit of BAHA and CROS, one RCT and three cohort-studies. The studies did not show any outcome differences between BAHA, CROS or no treatment. The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcome subjective benefit is very low (GRADE ⊔).

No serious complications following surgical implantation of BAHA have been reported. The most common adverse effects and complications of BAHA surgery are postoperative skin reaction which varies between 3 –30 %, and implant loss which varies between 1- 14 %.
Ethical questions
Should an expensive technique be offered when the level of evidence of an advantageous effect of BAHA on important outcomes is so low?

Economical aspects
The annual cost is estimated to be 1 500 000 SEK if all patients with profound unilateral hearing loss, 15-20 per year in region Västra Götaland, were offered BAHA or CROS.
Which health technology or method will be assessed?

Bone anchored hearing aid in patients with unilateral hearing loss

1a Who will lead the project?
Joacim Stalfors MD PhD, Department of Otorhinolaryngology, Sahlgrenska University Hospital, Göteborg, Sweden.

1b Who posed the question?
Professor Hasse Ejnell, Head of the Department of Otorhinolaryngology, Sahlgrenska University Hospital, Göteborg, Sweden.

1c Co-workers:
Radoslava Jönsson MD PhD, Department of Otorhinolaryngology, Sahlgrenska University Hospital, Göteborg, Sweden.
Mehrnaz Zeitooni, Audiologist, Hearing & Deafness organisation, Habilitation & Health, Southern Älvsborgs Hospital, Borås, Sweden.

1d Other participants
The HTA centre:
Ola Samuelsson. MD, PhD.
Christina Bergh, MD, Professor.
Eva Lotte Daxberg, Librarian
Thomas Franzén, Head of the Clinical Library, Sahlgrenska University Hospital, Göteborg, Sweden.

External reviewers:
Anders Larsson MD PhD, Southern Älvsborgs Hospital, Borås, Sweden.
Karin Manhem MD PhD, Sahlgrenska University Hospital, Göteborg, Sweden.

1e Are there any conflicts of interest for the proposer or any of the participants in the work group?
No.

Disease/disorder of Interest and Present Treatment

2a Disease/disorder of interest and its degree of severity
Single Sided Deafness (SSD) or profound unilateral hearing loss mean no functional hearing ability in one ear. It is a permanent functional deficit that affects communication, orientation and audition.

The unilateral hearing loss is due to a dysfunction in the cochlea or auditory nerve, i.e. a sensorineural hearing loss. It can be of congenital or acquired origin, due to malformation, disease or injury. Unilateral hearing loss can develop suddenly or in a progressive manner.

Patients with profound unilateral hearing loss often experience difficulties in sound
localisation, speech perception and recognition in noisy environments (Christensen 2010). Quality of life studies have reported significant disabling effects of this disorder (Gatehouse 2004, Borton 2009). Studies have also shown that children with unilateral hearing loss have lower academic and cognitive achievements, more behavioural problems, and a delayed language acquisition (Lieu 2010, Lieu 2004, Martinez-Cruz 2009).

- Risk of premature death
- Risk of permanent illness or damage, or reduced quality of life
- Risk of disability and health-related quality of life

2b Prevalence and incidence of the disease/disorder

Studies of prevalence and incidence of unilateral hearing loss are sparse and report conflicting results. Registration by ICD-10 is not possible to use for identification of these patient groups. Therefore, estimation has been made based on epidemiological studies, and a clinical database in Göteborg for rehabilitation of children with hearing impairment.

At Sahlgrenska University Hospital, a clinical database has been used to register children (0-18 years of age) with hearing rehabilitation needs since 15 years. According to the register, a total of 50 children with profound unilateral hearing loss and normal hearing in the contralateral ear are currently receiving rehabilitation services in the Göteborg area. Epidemiological calculations for the population aged 0-18 years in the Region Västra Götaland (n =340 000) yields a lowest incidence of 1.6 per 100 000 children. This incidence is in accordance with other reports (Vartiainen 1998, Mehl 2002).

In adults, profound unilateral hearing loss is typically caused by infections, trauma, acoustic neuromas, Ménière’s disease or cerebrovascular disease. It is more common with increasing age. However, there are no reliable epidemiological data regarding the incidence and prevalence of profound unilateral hearing loss in these patient groups.

After surgical removal of an acoustic neuroma, most patients will be deafened on the side of intervention. The number of patients undergoing acoustic neuroma surgery is 12-18 per year in the Region Västra Götaland.

There are no data with regard to development of unilateral deafness due to trauma or Ménière’s disease.

Based on the above-mentioned figures an estimation of the incidence of profound unilateral hearing loss in the Region Västra Götaland region yields a lowest estimated incidence of profound unilateral hearing loss of 5.8/100 000 per year (children: 10, adults: 30 sudden deafness, 15 acoustic neuromas, 5 trauma and 2 Ménière’s disease).

The prevalence is dependent on the cumulative incidence and increases with age. However, in the estimation of the prevalence of unilateral hearing loss the expected bilateral hearing decline with age (presbyacusis) also needs to be accounted for.
2c **Present treatment of the disease/disorder in the outpatient setting/ inpatient setting.**

Hearing aids for children and adults in the Region Västra Götaland are provided by the Habilitation & Health (H&H) Services. Provision of care includes prescription of CROS (contralateral routing of signal) or BAHA (bone anchored hearing aid) devices. It is important to point out that intervention by technical means is only one part of the hearing rehabilitation, and counselling and communication optimisation by educational support can also be of benefit for the patient with unilateral deafness.

The use of technical aids is dependent on the patient’s needs and type of hearing loss. After audiological assessment the interventional team chooses together with the patients the type of hearing aid.

Patients with profound unilateral hearing loss who require hearing aids are first offered a trial period with the CROS system. If this test period comes out positive, the CROS system may be prescribed. In some patients BAHA is tested. If the test result is better than with the CROS, surgery for the BAHA is offered. The surgical procedure is performed in an inpatient or outpatient (i.e. day surgery) setting. Surgery can be done in local anaesthesia in adults, whereas most children will be operated on in general anaesthesia in a two-stage procedure.

Patients with CROS or BAHA devices need follow-up visits to audiologists in secondary health care services for adjustments, service, reparation and re-prescription. For patients with BAHA, follow-up visits to surgeons at outpatient Otorhinolaryngology clinics are also necessary.

2d **Number of patients per year who undergo current treatment regimen?**

From databases and registries at the Habilitation and Health Services and the four Departments of Otorhinolaryngology in Region Västra Götaland, the CROS and BAHA-users can be identified.

During the 5-year period of 2006-2010, a total of 27 CROS devices were prescribed for children, all from the Göteborg area. The number of prescriptions for CROS to adults was 160 in Västra Götaland. However, these numbers include both first-time prescriptions as well as re-prescriptions of CROS.

A total of 326 BAHA fittings were performed during 2006-2010 for children and adults. The majority of BAHA operations was performed at Sahlgrenska University Hospital, see table below.

<table>
<thead>
<tr>
<th>Care provider in Västra Götaland</th>
<th>Paediatric</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU Hospital group</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Skaraborg Hospital</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sahlgrenska University Hospital</td>
<td>45</td>
<td>129</td>
</tr>
<tr>
<td>Southern Alvsborg Hospital</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The normal pathway of a patient through the health care system

See figure 1 in the appendix for a graphical presentation of current pathways.

Most children with profound unilateral hearing loss are identified by hearing screening procedures at birth, in pre-school or in elementary school. Also, some children are referred due to their parents’ awareness or by established clinical guidelines for specific diseases.

Children younger than 5 years need special audiological procedures that are only available at four hospitals in the Region Västra Götaland. After the diagnosis has been established, habilitation services are initiated for these children with unilateral hearing impairment. The team services are multi-professional and include medical follow-up, educational intervention by specialists, and, whenever possible, the use of hearing aids or other technical aids. For the children under the age of one year, the Region Västra Götaland has special clinical guidelines for intervention services. (Andersson e et al). These can also be adhered to children and adolescents.

Adult patients most often contact the primary health care system due to sudden or progressive unilateral hearing loss. The patients will then be referred to a Department of Otorhinolaryngology for diagnostic work-up and/or treatment. Audiological assessments are performed by the Hearing & Deafness organisation.

There are no specific regional or national guidelines for rehabilitation of adults with profound unilateral hearing loss.

Actual wait time in days for medical assessment /treatment

All health care providers within Otorhinolaryngology offer a visit for medical assessment of suspected unilateral deafness within 90 days after referral.

The Habilitation and Health organisation reports audiological assessments and hearing aid fittings of all patients within 90 days after referral.

BAHA surgery is performed within 90 days after patient agreement.
Present Health Technology

3a Name/description of the health technology at issue

Contralateral routing of signals - CROS

The traditional hearing aid solution for patients with profound unilateral hearing loss and normal hearing in the other ear has been contralateral routing of signals, CROS (Harford & Barry 1965). With a CROS device, the sound is transmitted from the deaf side to the normal hearing ear. This is done by the use of a hearing aid microphone on the deaf ear and a cord or a wireless FM transmission that present the auditory signals to the amplifier on the normal ear. In the normal ear an open ear mould is inserted in the ear canal. Hereby, the system transmits sound energy from the deaf side by air conduction through the external ear canal, eardrum and the middle ear ossicles of the normal ear to the normally functioning cochlea and auditory system of the hearing side.

Bone anchored hearing aid - BAHA

A bone anchored hearing aid transfers sound by bone conduction. The sound processor is anchored to the temporal bone by a titanium implant that needs to be surgically installed. The specially designed transducer creates vibrations that are transmitted via the bone of the skull to the cochlea and sound is perceived.

Before surgery, the effect of a BAHA can be simulated and tested by transcutaneous stimulation when the system’s hearing aid is pressed by a softband against the skull.

At surgery the BAHA implant (3 or 4 mm long) is placed in the temporal bone and penetrates the skin after the removal of soft tissues. Normally the surgical procedure takes less than 60 minutes. After healing, the transducer is attached to the implant. The BAHA is worn on the deaf side and transmits sound via bone conduction to the contralateral normal functioning cochlea.

Both the CROS and BAHA devices compensate the head shadow effect and, thus, may improve speech intelligibility in noise, and ease of listening. Complete restoration of directional hearing cannot be achieved since input from two cochleae is required for normal sound localisation. Both techniques are well established for transmission of amplified sound, and are used clinically.

3b The work group’s understanding of the potential value of the health technology

Patients with unilateral profound hearing loss often have severe problems to communicate in challenging listening conditions. With an appropriate hearing aid it may be possible to compensate for sounds from the deaf side, and, thereby, improve speech reception and recognition in certain situations. Positive benefit of hearing aids has been reported by disease-specific quality of life questionnaires with regard to communication, hearing in background noise, and in reverberation, in patients with unilateral hearing loss.

Today, many of these patients are offered a CROS device. However, this aid is seldom
preferred by the patient due to inconvenience. In many countries, a BAHA is offered as an alternative hearing aid.

Most probably, the majority of patients with unilateral profound hearing loss in Region Västra Götaland have no hearing aids. Patients with such hearing disabilities and challenging communication needs, should be offered test periods with both the CROS and the BAHA devices. It is likely that many patients will find one of these devices beneficial for their hearing demands. Thus, most probably many patients in the Region Västra Götaland could be better rehabilitated and achieve a higher quality of life. With the standards in practice today in Västra Götaland, patients are rehabilitated neither optimally nor equally.

3c **The central question for the current HTA project in one sentence**

Is bone anchored hearing aid system better than contralateral routing of signals or no hearing device in patients with profound unilateral hearing loss with regard to speech recognition, hearing threshold, sound localization, and quality of life?

3d **PICO** (P= Patients, I= Intervention, C= Comparison, O=Outcome)

PICO

P = Adults and children with unilateral deafness (or hearing loss) and normal hearing on the other side

\[I1 = \text{BAHA} \]
\[C1 = \text{CROS (Contralateral routing of signals)} \]

\[I2 = \text{BAHA} \]
\[C2 = \text{No hearing device} \]

\[I3 = \text{CROS} \]
\[C3 = \text{No hearing device} \]

O = Speech recognition, Hearing threshold, Sound localization, Quality of Life

3e **Key words**

Unilateral hearing loss, hearing aids, bone conduction
Review of the Level of Evidence

4 Search strategy, study selection and references – appendix 3
During February, 2011, the library performed searches in PubMed, the Cochrane Library, EMBASE, CINAHL, PsycInfo and a number of HTA-databases. Reference lists of relevant articles were also scanned for additional references. A total of 193 articles were identified after removal of duplicates, of which 109 abstracts were excluded by the library. Another 46 articles were excluded by the library after having been read in full text. 35 articles, 1 systematic review and 2 HTA reports were sent to the work group for assessment. 15 of these articles are included in the report, 4 are controlled studies and have been critically appraised.
The appraisal of articles is based on checklists from SBU regarding randomized controlled trials and other checklists developed by Olle Nyrén, professor, Karolinska Institutet, Stockholm,

Search strategies, eligibility criteria and a graphic presentation of the selection process are accounted for in appendix 3. The literature search and exclusion of abstracts were made by two librarians (TF, ELD) in consultation with the HTA-centre and the work group.

5a Describe briefly the present knowledge of the health technology

Speech recognition
The systematic literature search identified one randomised, controlled trial (RCT) and two non-randomised, controlled cohort studies reporting the effect on speech recognition with BAHA and CROS. All studies had serious limitations in study quality and uncertain external validity. The total number of patients in these studies was 77.

No differences were observed when BAHA, CROS or no hearing aid were compared with each another.

The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcome speech recognition is very low (щу).

Sound localisation
The three studies mentioned above also reported the effect on the ability to localise sound.

No differences were observed when BAHA, CROS or no hearing aid were compared with each another.

The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcome sound localization is very low (щу).

Quality of Life (Subjective experience)
The systematic literature search identified four studies that reported the subjective experience of BAHA or CROS devices. One was a randomised, controlled trial and three were non-randomised, controlled cohort-studies. All studies had serious limitations in study quality and uncertain external validity. The total number of patients was 392.
No differences in the subjective appreciation of a beneficial effect were observed when BAHA, CROS or no hearing aid were compared with each another.

The level of evidence for a subjective benefit of BAHA compared to CROS or no hearing device in patients with profound unilateral hearing loss is very low (GRADE ⊔).

Complications
In the analysis of complications to BAHA-surgery, only studies with more than 30 patient series were included. The majority of the patients in these studies were operated on for other indications than profound unilateral hearing loss. The rate and type of complications can be applied also on the present indication of profound unilateral hearing loss.

Early complications, such as necrosis of the skin around the implant, occurred in less than 1 % of the patients. Skin reactions around the implant, loss of osseointegration or implant failure, were the most commonly reported late complications. Adverse skin reactions were documented in 3 % - 30 % of the patients. Most skin reactions could be handled with local care, but the need of revision surgery was reported in up to 22 % of all cases. Lost osseointegration, and, as a consequence, a loosened/lost implant, was reported in 1 - 14 %. A lost implant could be re-installed, but it requires additional surgical procedure.

The probable reasons for the different complication rates in various case series are the use of different surgical techniques, and variations of skin care around the implant performed by the patient and/or caregivers.

It can be concluded that BAHA is an established and relatively safe surgical procedure, and the complications associated with the implantation are not severe.

5b Outcome tables – appendix 1
5c Excluded articles – appendix 2
5d Ongoing research

No randomised, controlled or non-randomised controlled study with relevance to the question at issue of this HTA-report was identified in www.clinicaltrials.gov.

All BAHA patients at the large BAHA-center in Nijmegen, The Netherlands, are prospectively followed and results will be published.

A Polish national quality register of patients who have received BAHA was started in 2009. It has been reported that 18 % of the patients treated with BAHA had unilateral profound hearing loss as the indication for the procedure. More data are expected to be reported from this database.
6 Which medical societies or health authorities recommend the new health technology?

Bone anchored hearing aids for patients with unilateral profound hearing loss are reimbursed in many European countries such as the UK, Poland, The Netherlands, Belgium, Denmark and Switzerland.

In 2002 the Food and Drug Administration (FDA) approved the BAHA produced by the Cochlear company (previously Entific AB) for use in patients older than five years with unilateral hearing loss. In 2009 the BAHA of the Oticon Medical company was also approved. It has since then been reimbursed on the indication unilateral profound hearing loss within the American health insurance system. More than 50 % of the BAHAs in the USA are fitted for the unilateral profound hearing loss indication.

In Sweden, there are presently no national guidelines with regard to BAHA.

Ethical aspects

7a Ethical consequences

Given the very low level of evidence of the any beneficial effect of BAHA or CROS for profound unilateral hearing, an introduction of both techniques can be questioned. However, in the modern society with increasing demands on communication, some patients will most probably experience a better quality of life with BAHA or CROS.

7b Will other patient groups or other treatments be adversely affected (pushed aside) due to an introduction of the new health technology?

A systematic rehabilitation of patients with unilateral profound hearing loss would increase the prescription of BAHA and CROS. Without increase in resources, this could be disadvantageous for patient groups with other hearing impairments. A more efficient clinical pathway could to a certain degree compensate these consequences.
8a When can this new health technology be put into practice?

The BAHA and CROS are already used in some patients with profound unilateral hearing loss, and also for other indications. A structured rehabilitation program with both devices can be put into practice without delay.

8b Is this technology used in other hospitals in Region Västra Götaland?

Surgical implantation of BAHA is performed at three hospitals in the Västra Götaland region. More than 90% of all the BAHA implants are currently performed at Sahlgrenska University Hospital. Both CROS and BAHA hearing devices are presently prescribed within the Hearing & Deafness centres in the region.

8c According to the work group, will there be any consequences of the new health technology for personnel?

New routines for patient information need to be implemented as well as tools for patient selections. Information of a structured rehabilitation program for children and adults with profound unilateral hearing loss needs to be communicated to professionals working within audiology.

8d Will there be any consequences for other clinics or supporting functions at the hospital or in the whole Western Region of Sweden?

An increased volume for BAHA surgery would require additional resources for anaesthesia of children and some adults. Most probably a large proportion of surgeries could be performed in day-care, thus, resources can be used more efficiently.
Economy

9a Present costs of currently used technologies and the new technology

An estimation of the costs for BAHA and CROS has been performed and is presented below. Data on the number of surgeries, hearing device prescriptions and direct medical costs have been retrieved from regional computerised administrative systems. Data on surgeries and thus direct medical costs are judged as accurate. Data on hearing prescriptions are not valid, since data have not been registered consistently in the region.

In Region Västra Götaland approximately 180-190 patients were fitted with a CROS-device and 7 patients with a BAHA due to profound unilateral hearing loss and normal hearing in the contralateral ear during 2006 - 2010.

The table presents the number of fittings for BAHA and CROS-devices and the estimated costs.

<table>
<thead>
<tr>
<th>CROS-device No. of fittings for unilateral deafness</th>
<th>TOTAL</th>
<th>FyrBoDal/NU</th>
<th>Göteborg HDV/SU</th>
<th>Skaraborg</th>
<th>S Alvsborg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>186 (estimation)</td>
<td>no data</td>
<td>111</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Estimated cost per device</td>
<td>SEK 4 500 excl VAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated cost for personnel per fitting</td>
<td>SEK 3 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>SEK 8 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of BAHA surgeries for unilateral deafness</td>
<td>7 adults</td>
<td>0 children 1 adult</td>
<td>0 children 6 adults</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estimated cost per surgical intervention</td>
<td>Day surgery: SEK 18 000 In-hospital surgery: SEK 26 000</td>
<td>Day Surgery: SEK 14 500</td>
<td>Day Surgery: SEK 18 100 In-hospital surgery: SEK 26 000</td>
<td>No data</td>
<td>-</td>
</tr>
<tr>
<td>Estimated cost per device</td>
<td>SEK 31 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated cost personnel per fitting</td>
<td>SEK 4 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost- Day surgery In-hospital surgery</td>
<td>SEK 53 800 SEK 61 800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Total change of costs

Given that 60 new patients develop profound unilateral hearing loss yearly, it can be anticipated that about one third of these patients would choose technical rehabilitation with CROS or BAHA (Hol 2010). Final prescription would be for only one of these devices. Thus, the maximal estimated cost corresponds to the cost for BAHA, but since some patients would choose the CROS the cost will be lower.

The estimated cost for 20 new CROS-patients is 160 000 SEK. If BAHA were offered to 20 new patients, the total cost would be between 1 200 000 SEK.

For patients with a long history of profound unilateral hearing loss, a time-dependent higher demand for rehabilitation services can be anticipated. This number of patients is difficult to estimate, but may be between 15-30 per year over a four-year period, corresponding to an additional annual cost of 120 000 – 240 000 SEK (CROS) or 900 000 – 1 800 000 SEK (BAHA) respectively during this period.

Costs for re-prescriptions of hearing devices and handling of surgical complications have not been calculated in this HTA-report.

The annual cost of a structured rehabilitation program for profound unilateral hearing loss during the first four years is estimated to be up to 400 000 SEK (160 000 + 240 000; see above) if all patients receive CROS. If all patients are treated with BAHA the corresponding cost is estimated to be up to 3 000 000 SEK (1 200 000 + 1 800 000; see above).

Can the new technology be adopted and used within the present budget (clinical budget/hospital budget)?

No.

Are there any available analyses of health economy? Cost advantages or disadvantages?

No health economic studies have been published of BAHA in patients with unilateral hearing loss. A cost-effectiveness analysis on the use of BAHA used for all indications has recently been published. The study has been performed in Birmingham, UK. For all indications, of which unilateral deafness is one, the average cost per QALY (Quality Adjusted Life Year) was estimated to be £17 610 (this corresponds to 180 000 SEK). The threshold at which treatment is considered cost-effective by the National Institute for Health and Clinical Effectiveness is £ 20 000-30 000 (Monksfield 2011).
Unanswered Questions

10a Important gaps in scientific knowledge?

Well designed RCTs of the efficacy of BAHA and CROS are still lacking.

One hypothesis is that patients in need of audibility in noisy environments, especially when sound is presented to the deaf side, will benefit (such as taxi/bus drivers, teachers, and other professionals with special communication needs) by BAHA or CROS. However, studies in these subcategories of subjects with unilateral hearing loss are also lacking.

10b Is there any interest in your own clinic/research group/organisation to start studies/trials within the research field at issue?

Yes.
1. An epidemiological study with the purpose to clarify the true incidence of unilateral severe and profound sensorineural hearing loss in children and adults.
2. A prospective, observational cohort study with the aim to identify the patients with greatest demands of hearing rehabilitation and to assess their functional outcome.
3. A randomised, controlled trial comparing the outcome of different hearing aids for the studied indication.
Benförankrad hörapparat hos patienter med ensidig dövhet

Frågeställning:
Är ett benförankrat hörselhjälpssystem bättre än ett hjälpmedel med kontralateral ljudöverföring eller inget hörselhjälpmedel alls avseende taluppfattning, hörseltröskel, lokaliserings av ljud och livskvalitet hos patienter med uttalad unilateral hörselnedsättning?

PICO

P = Vuxna och barn med ensidig dövhet och normal hörsel på andra sidan

I1 = Benförankrat hörselhjälpssystem (BAHA= boneanchored hearing aid)
C1 = Kontralateral ljudöverföring (CROS = Contralateral routing of signals)

I2 = BAHA
C2 = Inget hörselhjälpmedel

I3 = CROS
C3 = Inget hörselhjälpmedel

O = Taluppfattning, hörseltröskel, lokaliserings av ljud, livskvalitet

Resultat av HTA-processen:

Metod och målgrupp:
Patienter med en permanent sensorineural hörselskada på ena örat har en uttalat nedsatt hörsel på den aktuella sidan. Detta leder till en nedsatt förmåga att korrekt uppfatta det talade språket och att lokaliserera ljud. Idag rehabiliteras dessa patienter med hörselhjälpmedel som leder ljudsignaler från den skadade sidan över till det friska örat (s.k. CROS). Under senare år har en benförankrad hörapparat (s.k. BAHA) utvecklats och framförts som ett alternativ i behandlingen av denna patientgrupp.

Evidensläge:

Taluppfattning
Den systematiska litteratursökningen identifierade en randomiserad, kontrollerad studie (RCT) och två icke-randomiserade, kontrollerade observationsstudier som har rapporterat effekterna av BAHA och CROS avseende förmågan att uppfatta talat språk. Alla studierna hade allvarliga begränsningar i studiekvalitet och extern validitet. Inga skillnader förelag när BAHA, CROS eller inget hörselhjälpmedel alls jämfördes med varandra. Avseende taluppfattning är det vetenskapliga underlaget otillräckligt för att bedöma om BAHA är bättre än CROS eller inget hörhjälpmedel alls (GRADE ⊕).

Lokalisera ljud
Samma studier som rapporterat effekterna på taluppfattning har även redovisat sina resultat avseende förmågan att korrekt lokaliser ljud. Inga skillnader förelag när BAHA, CROS eller inget hörselhjälpmedel alls jämfördes med varandra. Avseende förmåga att lokaliser ljud är det vetenskapliga underlaget otillräckligt för att bedöma om BAHA är bättre än CROS eller inget hörhjälpmedel alls (GRADE ⊕).
Livskvalitet (Subjektiva upplevelser)
Den systematiska litteratursökningen identifierade fyra studier som har rapporterat effekterna av BAHA och CROS med avseende på patienternas subjektiva upplevelser. En studie var en randomiserad, kontrollerad studie (RCT) och tre var icke-randomiserade, kontrollerade observationsstudier. Alla studierna hade allvarliga begränsningar i studiekvalitet och extern validitet. Inga skillnader förelåg när BAHA, CROS eller inget hörselhjälpmedel alls jämfördes med varandra.
Avseende livskvalitet är det vetenskapliga underlaget otillräckligt för att bedöma om BAHA är bättre än CROS eller inget hörhjälpmedel alls (GRADE ⊕).

Komplikationer och biverkningar:
Tidiga komplikationer som hudnekros runt implantatet av den benförankrade hörapparten inträffade hos mindre än 1% av alla patienter som fått en BAHA inoperad (oväsent indikation). Sena hudkomplikationer runt implantatet har rapporterats hos 3 – 30 % av alla patienter som erhållit BAHA. Frekvensen av fall där implantatet lossnar från sin benförankring eller helt upphör att fungera av annat skäl varierar mellan 1 – 14 %, och behovet av kirurgisk revision har rapporterats inträffa hos upp till 22 % av all patienter.

Etiska aspekter:
Ska en dyrt medicinskt hjälpmedel som benförankrad hörapparat erbjudas i rehabiliteringen när behandlingseffekterna är oklara och evidensläget är otillräckligt?

Ekonomiska aspekter
Kostnaden för ett strukturerat rehabiliteringsprogram i vilket alla patienter med ensidig dövhet behandlas med CROS beräknas till 400 000 kronor årligen under en fyra årsperiod. Om alla patienter i stället skulle behandlas med BAHA uppskattas den motsvarande årliga kostnaden till 3 000 000 kronor.

Sammanfattning och slutsats
Evidensläget avseende effekterna av benförankrad hörapparat hos patienter med ensidig dövhet avseende taluppfattning, lokaliserings av ljud och livskvalitet är otillräckligt (GRADE ⊕).

För HTA-kvalitetsäkringsgruppen
Göteborg, Sverige, 2011-10-26

Christina Bergh, Professor
Statement from HTA-Centre, Region Västra Götaland

Bone anchored hearing aid in patients with unilateral hearing loss

Question at issue:
Is bone anchored hearing aid system better than contralateral routing of signals or no hearing device in patients with profound unilateral hearing loss with regard to speech recognition, hearing threshold, sound localization, and quality of life?

PICO

P = Adults and children with unilateral deafness (or hearing loss) and normal hearing on the other side

I1 = BAHA
C1 = CROS (Contralateral routing of signals)

I2 = BAHA
C2 = No hearing device

I3 = CROS
C3 = No hearing device

O = Speech recognition, Hearing threshold, Sound localization, Quality of Life

Summary of the health technology assessment:

Method and patient category:
Profound unilateral hearing loss is a permanent sensorineural hearing deficit in one ear. The patients experience impaired ability in speech recognition and sound localization. Current rehabilitation is the hearing aid solution with contralateral routing of signals from the deaf side to the normal hearing ear (CROS). In recent years, the bone anchored hearing aid (BAHA) has been advocated as an advantageous alternative.

Level of evidence:

Speech recognition
The systematic literature search identified one randomised, controlled trial (RCT) and two non-randomised, controlled cohort studies reporting the effect on speech recognition with BAHA and CROS. All studies had serious limitations in study quality and external validity. No differences were observed when BAHA, CROS or no hearing aid were compared with each another.

The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcome subjective benefit is very low (GRADE ⊕).

Sound localisation
The same three studies as above also reported the effect on the ability to localise sound. No differences were observed when BAHA, CROS or no hearing aid were compared with each another.

The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcomes sound localisation is very low (GRADE ⊕).
Quality of Life (Subjective experience)
The systematic literature search identified four studies that reported the subjective experience of BAHA or CROS devices. One was a randomised, controlled trial and three were non-randomised, controlled cohort-studies. All studies had serious limitations in the study quality and uncertain external validity. No differences in the subjective appreciation were observed when BAHA, CROS or no hearing aid were compared with each other. The level of evidence according to the GRADE system for BAHA being superior to CROS or no hearing device for unilateral profound hearing loss regarding the outcome subjective benefit is very low (GRADE ⊕).

Side effects and complications:
Early complications, such as necrosis of the skin around the implant, occurred in less than 1% of the patients after implantation of a BAHA (regardless of the indication).
Late complications with skin reactions around the implant have been reported in 3 – 30% of BAHA patients. The frequencies of loss of osseointegration or implant failure have varied between 1 – 14%, and the need of revision surgery has been reported to occur in up to 22% of all patients.

Ethical aspects:
Should an expensive technique be offered when the level of evidence of an advantageous effect of BAHA on important outcomes is so low?

Economical aspects
The annual cost of a structured rehabilitation program for profound unilateral hearing loss during the first four years is estimated to be up to 400 000 SEK if all patients receive CROS. If all patients are treated with BAHA the corresponding cost is estimated to be up to 3 000 000 SEK.

Concluding remarks
The level of evidence for a beneficial effect of bone anchored hearing aid to improve speech recognition, sound localization, and quality of life in patients with unilateral hearing loss is very low (GRADE ⊕).

On behalf of the Regional HTA Centre, Region Västra Götaland in Sweden
Göteborg, Sweden, 2011-10-26

Christina Bergh, Professor, MD.
Head of Regional HTA Centre,
Table 1. Outcome variable: Speech perception/recognition.

CROS = Contralateral Routing Of Sound. BAHA = Bone-Anchored Hearing Aid. CIC = CROS device Completely In Canal.
SRT = Speech reception threshold expressed as dB Signal/Noise ratio. A lower SRT value corresponds to better performance.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Result</th>
<th>Comments</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosman et al. 2003</td>
<td>The Netherlands</td>
<td>Non-randomised, cross-over study</td>
<td>9</td>
<td>0</td>
<td></td>
<td>Unaided: SRT<sub>i</sub> Hearing side = -2.8, Deaf side = 1.8 CROS: SRT<sub>i</sub> Hearing side = -2.0, Deaf side = 0.5 BAHA: SRT<sub>i</sub> Hearing side = -3.5, Deaf side = 0.4</td>
<td>No statistical analysis performed. Authors concluded that CROS and BAHA "were equally successful."</td>
</tr>
<tr>
<td>Hol et al. 2010b (Eur Arch Otorhinolaryngol)</td>
<td>The Netherlands</td>
<td>Randomised, cross-over study</td>
<td>10</td>
<td>2 CROS 1 BAHA 3 CIC</td>
<td></td>
<td>Unaided: SRT Hearing side = -4.3, Deaf side = 0.5 CROS: SRT Hearing side = -2.7, Deaf side = -1.7 BAHA: SRT Hearing side = -2.0, Deaf side = 0.4 CIC: SRT Hearing side = -4.6, Deaf side = 0.7</td>
<td>No statistical analysis performed. An observation was a trend of deteriorating SRT for CROS and BAHA when speech was presented to the ear with normal hearing.</td>
</tr>
<tr>
<td>Martin et al. 2010</td>
<td>UK</td>
<td>Randomised, cross-over study</td>
<td>19</td>
<td></td>
<td></td>
<td>Difference in SRT between BAHA and Unaided: Speech and Noise in front: = - 0.4; p = 0.90 Speech front, Noise BAHA side: = - 5.3; p = 0.06 Speech front, Noise non-BAHA side: = 8.1; p = 0.06</td>
<td>The test with or without activated BAHA was performed on the same day.</td>
</tr>
</tbody>
</table>

Footnote: i. Estimated from Figure 1 in the publication.
Table 2. Outcome variable: Subjective benefit.
CROS=Contralateral Routing Of Sound. BAHA= Bone-Anchored Hearing Aid. CIC = CROS device Completely In Canal.
APHAB = Abbreviated Profile of Hearing Aid Benefit questionnaire with four categories: EC = ease of communication. BN = background noise. RV = reverberation. AV = aversion. A lower score corresponds to a more favourable outcome.
SSQ = Speech, Spatial and Qualities hearing scale with three domains: SHRS = speech hearing rating. SRS = spatial rating. SQRS = sound qualities rating. A higher score corresponds to a more favourable effect.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>Withdrawals - dropouts</th>
<th>Result Control and interventions</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosman et al. 2003</td>
<td>The Netherlands</td>
<td>Non-randomised, cross-over study</td>
<td>9</td>
<td>0</td>
<td>Unaided: APHAB EC = 16.7 BN = 67.6 RV = 37.7 AV = 32.3</td>
<td>BAHA: APHAB EC = 10.9 BN = 40.0 RV = 20.1 AV = 20.9</td>
<td>CROS: APHAB EC = 12.0 BN = 48.0 RV = 30.5 AV = 33.6</td>
</tr>
<tr>
<td>Hol et al. 2010b (Eur Arch Otorhinolaryngol)</td>
<td>The Netherlands</td>
<td>Randomised, cross-over study</td>
<td>10</td>
<td>2 CROS 1 BAHA 3 CIC</td>
<td>Unaided: APHAB EC = 28 BN = 60 RV = 45 AV = 35</td>
<td>BAHA: APHAB EC = 18 BN = 54 RV = 46 AV = 42</td>
<td>CROS: APHAB EC = 22 BN = 61 RV = 38 AV = 40</td>
</tr>
<tr>
<td>Martin et al. 2010</td>
<td>UK</td>
<td>Non-randomised, controlled observational study</td>
<td>54 BAHA 67 Controls</td>
<td>8 BAHA 18 Controls</td>
<td>Controls: SSQ SHRS = 45 SRS = 33 SQRS = 67</td>
<td>BAHA: SSQ SHRS = 50 SRS = 32 SQRS = 65</td>
<td>No significant differences between cases and controls.</td>
</tr>
<tr>
<td>House et al. 2010</td>
<td>USA</td>
<td>Non-randomised, controlled observational study</td>
<td>126 BAHA 65 Controls</td>
<td>58 BAHA 65 Controls</td>
<td>Controls: SSQ SHRS = 5.3 SRS = 3.6 SQRS = 7.0</td>
<td>BAHA: SSQ SHRS = 5.7 SRS = 3.8 SQRS = 6.6</td>
<td>No significant differences between control and BAHA group on overall SSQ scores and subscales.</td>
</tr>
</tbody>
</table>

i. The values represent the total sum of the entire subscale.
ii. The values represent the mean score of the entire subscale, estimated from Figure 1 in the publication.
Table 3. Outcome variable: Sound localisation.
CROS = Contralateral Routing Of Sound. BAHA = Bone-Anchored Hearing Aid CIC = CROS device Completely In Canal.
Sound lateralisation score presented as left/right in %. A score of 50% means that the lateralisation performance is equal to mere chance.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>Number of patients n=</th>
<th>With-</th>
<th>Result</th>
<th>Comments</th>
<th>Quality (may vary according to outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>drawals - dropouts</td>
<td></td>
<td>Control and interventions</td>
<td>No data presented. No statistical analysis performed.</td>
</tr>
<tr>
<td>Bosman et al. 2003</td>
<td>The Netherlands</td>
<td>Non-randomised, cross-over study</td>
<td>9</td>
<td>0</td>
<td>Unaided: “At the level of chance”</td>
<td>CROS: “At the level of chance”</td>
<td>BAHA: “At the level of chance”</td>
</tr>
<tr>
<td>Hol et al. 2010b (Eur Arch Otorhinolaryngol)</td>
<td>The Netherlands</td>
<td>Randomised, cross-over study</td>
<td>10</td>
<td>2 CROS 1 BAHA 3 CIC</td>
<td>Unaided: 500 Hz 54 % 3 000 Hz 61 %</td>
<td>CROS: 500 Hz 53 % 3 000 Hz 49 %</td>
<td>BAHA: 500 Hz 56 % 3 000 Hz 59 %</td>
</tr>
</tbody>
</table>
Table 4. Complications in bone anchored hearing aid surgery.

SSD = Single-sided deafness

<table>
<thead>
<tr>
<th>Author, year, country</th>
<th>Study group</th>
<th>Postoperative complication</th>
<th>Skin reactions</th>
<th>Revision surgery / longer abutment</th>
<th>Implant loss</th>
<th>New implant</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Wolf et al 2008, The Netherlands</td>
<td>n = 142 Follow-up 1-10.5 years (mean 5.6)</td>
<td></td>
<td>n = 40 (28.2 %)</td>
<td>Revision surgery n = 20 (14.1 %) Longer abutment n = 6 (4.2 %)</td>
<td>n = 14 (9.9 %)</td>
<td></td>
<td>3 SSD patients</td>
</tr>
<tr>
<td>House et al 2007, USA</td>
<td>n = 149 Consecutive patients 2001-2005 Follow-up No data</td>
<td></td>
<td>Wound infection n = 2 (1.3 %) Flap necrosis n = 1 (0.7 %) Skin overgrowth n = 11 (7.4 %)</td>
<td>n = 11 (7.4 %)</td>
<td>n = 5 (3.4 %)</td>
<td>n = 3 (2.0 %)</td>
<td>127 SSD patients.</td>
</tr>
<tr>
<td>Hol et al 2010a (Annals of Otology…), The Netherlands</td>
<td>n = 56 Follow-up No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>n = 1 (1.7 %)</td>
<td></td>
<td>Patients with both congenital and aquired unilateral deafness.</td>
</tr>
<tr>
<td>Mace et al 2009, UK</td>
<td>n = 60 Surgery 1996-2006</td>
<td>No data</td>
<td>n = 17 (25.8 %)</td>
<td>Revision surgery n = 7 (10.6 %)</td>
<td>n = 2 (3.0 %)</td>
<td>n = 2 (3.0%)</td>
<td>5 SSD patients</td>
</tr>
<tr>
<td>McDermott et al 2009, UK</td>
<td>n = 182 (230 implants) Follow-up 4-13 years Age <16 years 107 with significant medical history**</td>
<td>No data</td>
<td>n = 34 (18.7 %)</td>
<td>Revision surgery n = 14 (7.7 %) Longer abutment n = 15 (8.2 %)</td>
<td>n = 32 (17.6%) 25/32 lost implants were 3 mm. Failure rate and age: <3 years: 40% 3-5: 38% 5-10: 8% >10 years: 1%</td>
<td>No data</td>
<td>No SSD patients</td>
</tr>
<tr>
<td>Reyes et al 2000, Sweden</td>
<td>n = 149 Follow-up 8 years</td>
<td>No data</td>
<td>Holger index for 149 patients: Grade >2 : n = 5 (3 %)</td>
<td>No data</td>
<td>n = 9 (6.0 %)</td>
<td>No data</td>
<td>No SSD patients</td>
</tr>
<tr>
<td>Shirazi et al 2006, USA</td>
<td>n = 58 Follow-up No data</td>
<td>Loss of skin graft n = 6 (10.3 %)</td>
<td>Skin overgrowth n = 3 (5.2 %)</td>
<td>Revision surgery n = 1 (1.7 %) Longer abutment n = 1 (1.7 %)</td>
<td>n = 2 (3.4 %)</td>
<td>n = 2 (3.4 %)</td>
<td>25 SSD patients</td>
</tr>
</tbody>
</table>
Table 4. Complications in bone anchored hearing aid surgery.

SSD = Single-sided deafness

<table>
<thead>
<tr>
<th>Author, year, Country</th>
<th>Study group</th>
<th>Postoperative complication</th>
<th>Skin reactions</th>
<th>Revision surgery / longer abutment</th>
<th>Implant loss</th>
<th>New implant</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van de Berg et al 2010</td>
<td>The Netherlands</td>
<td>n = 143 Follow-up 3-147 months</td>
<td>No data</td>
<td>Holger index for 143 patients: Grade >2 n = 16 (11.2 %)</td>
<td>n = 19 (13.3 %)</td>
<td>n = 3 (2.1 %)</td>
<td>n = 3 (2.1 %)</td>
</tr>
<tr>
<td>Van Rompaey et al 2011</td>
<td>Belgium</td>
<td>n = 138 Follow-up 7-120 months (mean 61)</td>
<td>No data</td>
<td>Holger index for 82 patients: Grade >2 n = 24 (30 %) Skin overgrowth n = 19 (13.8 %)</td>
<td>n = 30 (22 %)</td>
<td>n = 9/82 (9 %)</td>
<td>No data</td>
</tr>
<tr>
<td>Wazen et al 2008</td>
<td>USA</td>
<td>n = 218 (223 implants) Follow-up 4-114 months (mean 44) Age 6-92 years, (mean 56)</td>
<td>n = 4 (1.8 %) Hematoma Abscess Bleeding Flap necrosis</td>
<td>Hypertrophic scar n = 10 (4.6 %) Dermatitis n = 3 (1.4 %) Skin overgrowth n = 4 (1.8 %) Keloid formation n = 4 (1.8 %)</td>
<td>Revision surgery n = 10 (4.6 %) Longer abutment n = 1 (0.5 %)</td>
<td>n = 3 (1.4 %)</td>
<td>n = 3 (1.4 %)</td>
</tr>
<tr>
<td>Welling et al. 1991</td>
<td>USA</td>
<td>n = 43 Follow-up up to 24 months Age 26-29 years, (mean 46)</td>
<td></td>
<td>Minor skin reaction: n = 19 (44 %) Need of flap revision: n = 1 (2.3 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Goldenhar syndrome, Treacher Collins syndrome, unusual chromosome deletions, Down syndrome, Pierre Robin syndrome, Turner syndrome, CHARGE syndrome.

SSD: singe sided deafness, or unilateral profound hearing loss.
<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen 2006</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Arndt 2010</td>
<td>Not the correct intervention</td>
</tr>
<tr>
<td>Bergeron 2006</td>
<td>Systemic review including only case series</td>
</tr>
<tr>
<td>Bovo 2011</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Christensen 2010</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>CADTH 2010</td>
<td>Systematic review based on a limited literature search</td>
</tr>
<tr>
<td>Danhauer 2010</td>
<td>Systematic review of another patient category</td>
</tr>
<tr>
<td>Gluth 2010</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Hol 2004</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Hol 2005b (Audiol Neurotol)</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Hol 2005a (Otology & Neurotol)</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Kunst 2008</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Lin 2006</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Linstrom 2009</td>
<td>Not the correct comparison</td>
</tr>
<tr>
<td>McLaron 2004</td>
<td>Case series with no data on complications reported</td>
</tr>
</tbody>
</table>
Appendix 2

<table>
<thead>
<tr>
<th>Study (author, publication year)</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niparko 2003</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Ontario Health Technology Assessement series 2002</td>
<td>Systemic review including only case series</td>
</tr>
<tr>
<td>Pfiffner 2009</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Priwin 2007</td>
<td>Not the correct patient category</td>
</tr>
<tr>
<td>Vaneecloo 2001</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Wazen 2003</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Wazen 2010</td>
<td>Case series with less than 30 patients</td>
</tr>
<tr>
<td>Yuen 2009</td>
<td>Case series with less than 30 patients</td>
</tr>
</tbody>
</table>
Appendix 3: Search strategy, study selection and references

Question(s) at issue:
Is bone anchored hearing aid system better than contralateral routing of signals or no hearing device in patients with profound unilateral hearing loss with regard to speech recognition, hearing threshold, sound localization, and quality of life?

PICO (P= Patients, I= Intervention, C= Comparison, O=Outcome)
The central question at issue includes three different comparisons, i.e. PICO 1 - 3

P = Adults and children with unilateral deafness (or hearing loss) and normal hearing on the other side

I1 = BAHA
C1 = CROS (Contralateral routing of signals)

I2 = BAHA
C2 = No hearing device

I3 = CROS
C3 = No hearing device

O = Speech recognition, Hearing threshold, Sound localization, Quality of Life
Quality of Life
Health care costs

Search strategy:

PubMed (2011-02-10)
bone-anchored hearing aid OR bone-anchored hearing aids OR baha OR Osseointegrated hearing aid OR Osseointegrated hearing aids OR CROS OR Contralateral Routing of Signals
AND
Hearing loss, unilateral OR ((unilateral OR one-sided OR single-sided) AND (deafness OR deaf OR hearing impairment))

90 results

The Cochrane Library (2011-02-10)
bone-anchored hearing aid):ti,ab,kw or (bone-anchored hearing aids):ti,ab,kw or (BAHA):ti,ab,kw or (osseointegrated hearing aid):ti,ab,kw or (Osseointegrated hearing aids):ti,ab,kw OR (CROS):ti,ab,kw OR (Contralateral Routing of Signals):ti,ab,kw
AND
((unilateral):ti,ab,kw or (one-sided):ti,ab,kw or (single-sided):ti,ab,kw) AND
deafness):ti,ab,kw or (deaf):ti,ab,kw or (hearing impairment):ti,ab,kw) OR (hearing loss, unilateral):ti,ab,kw)

10 results

Cochrane reviews 0
Other reviews 1
Clinical trials 5
Technology Assessments 4
Economic evaluations 0

EMBASE (OVID SP) (2011-02-10)
bone-anchored hearing aid.mp OR exp bone anchored hearing aid OR bone-anchored hearing aids.mp. OR BAHA.mp OR Osseointegrated hearing aid.mp. OR Osseointegrated hearing aids.mp. OR CROS.mp. OR Contralateral Routing of Signals.mp.
AND
unilateral hearing loss OR ((one-sided.mp. OR single-sided.mp. OR unilateral mp.) AND (deafness.mp. OR deaf,mp) OR exp hearing impairment))

101 results

CINAHL (EBSCO) (2011-02-10)
TX bone-anchored hearing aid OR TI bone-anchored hearing aids OR TX BAHA OR TX osseointegrated hearing aid OR TX osseointegrated hearing aids OR CROS
AND
((TX Unilateral OR TX one-sided OR TX single-sided) AND (TX deaf OR deafness OR TX hearing impairment)) OR TX hearing loss, unilateral

30 results

PsycInfo (2011-02-10)
bone-anchored hearing aid.mp. OR bone-anchored hearing aids.mp. OR BAHA.mp. OR osseointegrated hearing aids.mp. OR osseointegrated aids.mp. OR CROS.mp. OR Contralateral Routing of Signals.mp.
AND
((unilateral.mp. OR one-sided.mp. OR single-sided.mp.) AND (exp deaf OR deafness.mp. OR hearing impairment)) OR hearing loss, unilateral.mp.

4 results

CRD (2011-02-10)
BAHA OR (bone-anchored AND hearing AND aid) OR (bone-anchored AND hearing AND Aids) OR CROS

13 results

CADTH (Canadian Agency for Drugs and Technologies in Health) (2011-02-10)
1 results

SBU, Kunnskapssenteret, Sundhedsstyrelsen
Nothing new was identified.
Reference lists:
A comprehensive review of reference lists brought no new references.

Exklusions- och inklusionskriterier

Studietyp:
- Studies with some kind of control group (RCT/Observation studies)
- Case series ≥ 30 patients – only complications
- Systematic reviews
- No case reports or review articles

Limits
Language: English, Danish, Norwegian, Swedish and non English with English abstracts
Publication date from 1977-
Selection process – flow diagram

Records identified through database searching (n = 249)

Additional records identified through other sources (n = 55)

Records after duplicates removed (n = 193)

Records screened by library (n = 193)

Records excluded by library. Did not fulfil PICO or other eligibility criteria (n = 109)

Full-text articles assessed for eligibility by library (n = 84)

Full-text articles excluded by library, with reasons (n = 46)

24 = wrong study design
11 = wrong patient
11 = wrong intervention
11 = wrong comparison
= wrong subject/angle

Full-text articles assessed for eligibility by project group (n = 38)
Including 1 systematic review and 2 HTA reports

Full-text articles excluded by project group, with reasons (n = 23)
See Appendix 2

Studies included in synthesis (n = 15)
See Appendix 1
References

Included articles:

Hol MKS, Kunst SJW, Snik AFM, Cremers CWRJ. Pilot study on the effectiveness of the conventional CROS, the transcranial CROS and the BAHA transcranial CROS in adults with unilateral inner ear deafness. European Archives of Oto-Rhino-Laryngology. 2010b June; 267 (6):889-96.

Excluded articles:

Hol MKS, Bosman A, Snik AFM, Mylanus, Cremers CWR. Does the bone-anchored hearing aid have a complementary effect on audiological and subjective outcomes in patients with unilateral conductive hearing loss? Audiol Neurotoot 2005b May-Jun; 10(3): 159-68.

Other:

Holmgren S, Bertilsson Uleberg G, editors. RED10 research evaluation: reports from the evaluation of all research at the University of Gothenburg 2010. Göteborg: University of Gothenburg, 2011

Summary of Findings Table
Bone anchored hearing aid (BAHA) in comparison to contralateral routing of signals (CROS) or no intervention

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Design</th>
<th>Study limitations</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Publication bias</th>
<th>Magnitude of effect</th>
<th>Level of evidence GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech recognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 RCT</td>
<td>Very serious limitations (-2)</td>
<td>No important inconsistency</td>
<td>Uncertainty (-1)</td>
<td>Imprecision (-1)</td>
<td>Unlikely</td>
<td>Not relevant</td>
<td>⊕ Very low</td>
</tr>
<tr>
<td>Sound localisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 RCT</td>
<td>Very serious limitations (-2)</td>
<td>No important inconsistency</td>
<td>Uncertainty (-1)</td>
<td>Imprecision (-1)</td>
<td>Unlikely</td>
<td>Not relevant</td>
<td>⊕ Very low</td>
</tr>
<tr>
<td>Subjective experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 RCT</td>
<td>Very serious limitations (-2)</td>
<td>Some inconsistency (?)</td>
<td>Uncertainty (-1)</td>
<td>Imprecision (-1)</td>
<td>Unlikely</td>
<td>Not relevant</td>
<td>⊕ Very low</td>
</tr>
</tbody>
</table>
Figure 1. The normal pathway of a patient with unilateral severe hearing loss through the health care system. After prescription of hearing device, the patient will return for service, reparation of the hearing aid, and re-fitting after 5-7 years.
Health technology assessment (HTA) is the systematic evaluation of properties, effects, and/or impacts of health care technologies, i.e. interventions that may be used to promote health, to prevent, diagnose or treat disease or for rehabilitation or long-term care. It may address the direct, intended consequences of technologies as well as their indirect, unintended consequences. Its main purpose is to inform technology-related policymaking in health care.

To evaluate the quality of evidence the Centre of Health Technology Assessment in Region Västra Götaland is currently using the GRADE system, which has been developed by a widely representative group of international guideline developers. According to GRADE the level of evidence is graded in four categories:

- **High quality of evidence** = ⊕⊕⊕⊕
- **Moderate quality of evidence** = ⊕⊕⊕
- **Low quality of evidence** = ⊕⊕
- **Very low quality of evidence** = ⊕

In GRADE there is also a system to rate the strength of recommendation of a technology as either “strong” or “weak”. This is presently not used by the Centre of Health Technology Assessment in Region Västra Götaland. However, the assessments still offer some guidance to decision makers in the health care system. If the level of evidence of a positive effect of a technology is of high or moderate quality it most probably qualifies to be used in routine medical care. If the level of evidence is of low quality the use of the technology may be motivated provided there is an acceptable balance between benefits and risks, cost-effectiveness and ethical considerations. Promising technologies, but a very low quality of evidence, motivate further research but should not be used in everyday routine clinical work.

For diagnostic studies, the GRADE system should be applied for clinical outcomes and we have thus chosen not to use it for diagnostic accuracy studies. In the present report, we have evaluated the level of evidence for diagnostic accuracy according to the system previously used by SBU, (Swedish Council on Health Technology Assessment), briefly described below.

High level of evidence
At least two studies of high quality or a systematic review of good quality

Moderate level of evidence
One study of high quality and at least two studies of moderate quality

Low level of evidence
At least two studies of moderate quality

Very low level of evidence
Only studies of low quality

Christina Bergh, Professor, MD.
Head of HTA-centre
From operations or activity/management:

Question

Quality assurance process

Main process

Clinic-based HTA

Support process

• Training
• Search, sort, and select process
• Advice, help, assistance
• Feedback

External review

Formally designated group for quality assurance

Summarized assessment

Quality assured decision rationale